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ABSTRACT
Achieving high performance on modern systems is challenging.

Even with a detailed pro�le from a performance tool, writing or

refactoring a program to remove its performance issues is still a

daunting task for application programmers: it demands lots of

program optimization expertise that is o�en system speci�c.

Vendors o�en provide some detailed optimization guides to assist

programmers in the process. However, these guides are frequently

hundreds of pages long, making it di�cult for application pro-

grammers to master and memorize all the rules and guidelines and

properly apply them to a speci�c problem instance.

In this work, we develop a framework named Egeria to alleviate

the di�culty. �rough Egeria, one can easily construct an advising

tool for a certain high performance computing (HPC) domain (e.g.,

GPU programming) by providing Egeria with a optimization guide

or other related documents for the target domain. An advising

tool produced by Egeria provides a concise list of essential rules

automatically extracted from the documents. At the same time, the

advising tool serves as a question-answer agent that can interac-

tively o�ers suggestions for speci�c optimization questions. Egeria

is made possible through a distinctive multi-layered design that

leverages natural language processing techniques and extends them

with knowledge of HPC domains and how to extract information

relevant to code optimization Experiments on CUDA, OpenCL, and

Xeon Phi programming guides demonstrate, both qualitatively and

quantitatively, the usefulness of Egeria for HPC.
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1 INTRODUCTION
Achieving high performance on computing systems is a compli-

cated process. It requires a deep understanding of the underlying

computing systems, the architectural properties, and proper imple-

mentations to take a full advantage of the computing systems.

Performance pro�ling tools (e.g., HPCToolkit [1], NVProf [24])

have been developed to help. Although these tools help identify

performance issues, how to optimize the code to address the issues

still demands lots of expertise speci�c to the underlying architecture

and may require signi�cant code refactoring.

�e problem is exacerbated by the rapid changes and increas-

ing complexity of modern systems (e.g., many-core heterogeneous

systems equipped with Graphic Processing Units), causing a fast

continuous growth of the set of knowledge and speci�cations pro-

grammers have to master in order to e�ectively harness the com-

puting systems.

Vendors typically provide some documents to assist users in

programming new architectures. For example, both NVIDIA and

AMD have published programming guides [6, 23] explaining the

many intricate features of their Graphic Processing Units (GPUs)

and programming models, the detailed guidelines and methods for

developing code that runs e�ciently on each major GPU model.

Such documents, however, are o�en hundreds of pages long. Pro-

grammers could read them in their entirety and try to apply what

they’ve learned; however, it is di�cult for application programmers

to master and memorize all the knowledge, and quickly come up

with all the relevant guidelines to apply when they encounter a

speci�c program optimization problem. As an NVIDIA architect

observes, only a small subset of GPU application developers have

showed a good familiarity with the NVIDIA GPU programming

guide. Consequently, the potential value of the detailed program-

ming guides remains largely untapped.

To address the problem, we propose a framework named Egeria
1

to bridge the gap between programmers’ demands for optimization

guidelines and the hard-to-master programming guides. �rough

Egeria, one can easily construct an advising tool for a certain HPC

domain (e.g., GPU programming) by providing Egeria with a pro-

gramming guide or other documents of that type. �e advising

tool synthesized by Egeria provides a concise list of essential rules,

automatically extracted from the documents. At the same time,

the advising tool can serve as a question-answer (QA) agent to

interactively o�er suggestions for speci�c optimization questions.

With such advising tools, programmers no longer need to memorize

every optimization guideline or spend time to search. When en-

countering an optimization problem, they can just feed the advising

tool either a performance pro�ling report of an execution of inter-

est or some queries on how to solve certain speci�c performance

1
�e name comes from a nymph Egeria in Greek mythology who gives wisdom and

prophecy.
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issues. �e tool will immediately provide a list of guidelines for

solving those performance problems.

QA systems exist in other domains. Egeria di�ers from such

systems in two key aspects. First, Egeria itself is not a QA system

but a generator of QA systems for various HPC domains. Having

an easy-to-use generator of advising tools is essential for meeting

the needs of HPC, thanks to its many domains and the fast changes

in each of them. Second, traditional construction of a QA system

usually requires lots of manual work. Domain experts need to

manually develop the ontology (i.e., conceptual framework and

terminology) of the domain, and collect a large amount of labeled

documents for systematic training. For example, in the IBM Wat-

son system [11, 12], candidate answers are ranked based on the

contribution from hundreds of evidence dimensions. �e forma-

tion of these dimensions requires a manually de�ned taxonomy

of evidence types to group features. Weighting and combining

these features for a �nal ranking score also need a well-trained

machine-learning model. Egeria, on the other hand, produces the

advising tools with virtually no manual inputs needed, making it

easy to adopt in HPC. To our best knowledge, Egeria is the �rst

auto-constructor of advising tools for HPC or other domains.

�e key reason for making Egeria a success is a distinctive multi-

layered design that closely leverages the properties of HPC do-

mains to overcome the weaknesses of existing Natural Language

Processing (NLP) techniques. NLP has achieved some impressive ad-

vancements in recent years. However, some complex NLP analyses

needed for general advising tool constructions are yet to get mature.

�e state-of-the-art semantic role labeling, for instance, gives only

76.6% accuracy for general test sets [30]. �e yet-to-improve quality

of NLP techniques is the reason for the heavy reliance on manual

e�orts in the construction of existing advising tools.

Two key features of Egeria help it circumvent those di�culties.

(1) It leverages some important features of HPC domains, including

the common syntactic and semantic pa�erns in the advising sen-

tences in programming guides for HPC, and the importance of some

special words and phrases related with performance improvements

in HPC. Its ability to exploit such features helps signi�cantly sim-

plify the problems. (2) Egeria adopts a multi-layered design, which

integrates the HPC domain properties into the NLP techniques in

each of the layers. �rough treatments at the levels of keywords,

syntactic structures, and semantic roles guided by the HPC special

features, Egeria is able to successfully recognize advising sentences

from raw programming guide documents. Coupled with some text

retrieval techniques (VSM [34] and TF-IDF [34]), Egeria accurately

�nds the relevant advising sentences for users’ queries.

We evaluate Egeria through several experiments, in which, Ege-

ria produces an advising tool for CUDA programming on NVIDIA

GPUs, OpenCL programming on AMD GPUs, and Xeon Phi pro-

gramming on Intel Xeon Phi coprocessors. Egeria is able to recog-

nize the advising sentences from these programming guides with

over 80% precision recall rates, signi�cantly higher than other al-

ternative methods. Its two-stage design makes it able to answer

CUDA program optimization queries with a 80-100% accuracy, sub-

stantially higher than a single-stage design. A user study on 37

students show that by using the advising tools produced by Egeria,

students can more e�ectively optimize GPU programs, yielding

code with a much higher performance.

Overall, this work makes the following major contributions:

• Egeria. It introduces the �rst auto-constructor of HPC

advising tools.

• Approach. It presents an e�ective approach, which cir-

cumvents the limitations of current NLP techniques for

constructing advising tools through a multi-layered design

that incorporates HPC special properties into each NLP

layer.

• Evaluation. It describes a systematic evaluation of the novel

framework and approach, and demonstrates their promise

for bridging the gap between programmers’ demands for

HPC optimization advises and the hard-to-master rapid

changing programming guide documentations.

2 PROBLEM OVERVIEW AND POTENTIAL
SOLUTIONS

�e problem that an HPC advising tool faces is to identify the

sentences in a given document that can serve as suggested solutions

for an input query on improving certain performance aspects of

a program (e.g., “how to improve memory throughput”). We call

those sentences “relevant advising sentences”. �e problem could be

regarded as a binary classi�cation problem: to determine whether

each of the sentences in the given document belongs to the category

of “relevant advising sentences” for the given query. �is section

discusses the potential solutions and their issues, and then gives an

overview of our solution.

Potential Solutions. A commonly used method for classi�cation

is supervised machine learning. By statistically learning upon a set

of training data, the method builds up a predictive model. For an

input query, the model predicts which sentence in the document is

an advising sentence relevant to that query. �is method requires

a large volume of labeled data, which, in our case, would be many

queries and at least many thousands of sentences labeled as “rel-

evant advising sentences” or “other sentences” for each of many

queries. Given the scarcity of labeled data in HPC advising and the

large amount of manual labeling e�orts this method requires, this

method is not a practical option for our problem.

We hence focus on unsupervised methods. In text retrieval, there

is a common unsupervised method for retrieving sentences relevant

to a query. It represents both the query and each sentence as a fea-

ture vector, and then computes the relevance between the query and

each sentence by calculating their vector distances. �is method

considers relevance only. When applying this method to our prob-

lem, it �nds many sentences that are relevant to the query, but are

not advising sentences (as Section 4 reports). �ese sentences may

explain some architectural details or examples rather than provide

potential solutions for the performance problem expressed in the

query.

Design of Egeria. Egeria employs a distinctive unsupervised de-

sign. To address the shortcomings of the relevance-only method in

text retrieval, it uses a two-stage design. As the top row in Figure 1

shows, the two stages consider the “advising” and “relevance” as-

pects respectively. �e two boxes at the bo�om part of Figure 1 give

the more detailed illustrations of the two stages. �e �rst stage, ad-
vising sentence recognition, recognizes all advising sentences from

the given document. �e second stage, knowledge recommenda-
tion, retrieves, from the set of advising sentences collected in the

�rst stage, the sentences relevant to the input query through text
retrieval methods, and returns them as answers to the user. �e
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Figure 1: Overview of Egeria. �e two boxes at the bottom
give more detailed illustrations of the two stages of Egeria
respectively.

output from the �rst stage can also be directly reviewed by the user

as a reminding summary of all the essential guidelines contained

in the input document.

�e �rst stage is more challenging due to the limited e�cacy

of existing NLP techniques. Egeria overcomes the di�culties by

adopting a multi-layered scheme guided by some HPC domain-

speci�c properties, as the le� bo�om box in Figure 1 shows. It

builds its second stage upon two key text retrieval techniques,

namely the VSM representations and the TF-IDF weighting method.

We provide a detailed explanation next.

3 THE INTERNAL OF EGERIA
�is section describes the design of Egeria and how it addresses

the di�culties in each of the two stages.

3.1 Stage I: Advising Sentence Recognition
It is worth noting the di�erences between advising sentence recog-

nition and a common text retrieval task namely document summa-

rization. Document summarization aims at creating a representative

summary or abstract of one or more documents [7]. It focuses on

�nding the most informative sentences, which may not be advising

sentences. We are not aware of any prior studies speci�cally on

recognizing advising sentences.

Recognitions of advising sentences require the analysis of the

semantic and syntax of the sentences through some NLP techniques.

�e main challenge is the limited e�cacy of each individual existing

NLP techniques. As aforementioned, for instance, the state-of-the-

art semantic role labeling (which labels what semantic role each

phrase associated with verbs plays in a sentence) gives only 76.6%

accuracy for general test sets [30].

Two key features of Egeria help it circumvent those di�culties.

(1) It leverages some important properties of HPC domains, includ-

ing the common pa�erns in the suggesting sentences in program-

ming guides for HPC, and the importance of some special words

and phrases related with performance improvements in HPC. �ese

signi�cantly simplify the problem. (2) It adopts a multi-layered

design, employing techniques at the levels of keywords based �lter-

ing, syntactic dependence analysis, and semantic role labeling. �e

combination creates a synergy for one technique to complement

the weaknesses of another. Meanwhile, it e�ectively integrates the

HPC domain knowledge into the NLP techniques at each of the

layers. Together, these techniques lead to �ve selectors that work as

an assembly to recognize advising sentences with a high accuracy.

We next explain these two features in more detail.

3.1.1 HPCDomain-Specific Properties. By examining some HPC

documents, we observe that advising sentences of HPC are o�en

featured with certain pa�erns in its sentential form coupled with

some key words. We crystallize the observations into six categories

as shown in Table 1 and �ve sets of keywords as shown in Table 2.

As Table 1 shows, the �rst category corresponds to sentences

that contain some critical keywords (e.g., “good choice” in the

example sentence). Our observation shows that appearances of

such keywords can usually o�er a su�cient indication, regardless

of the forms of the sentences. We put together a collection of such

keywords as FLAGGING WORDS shown in Table 2.

�e second category includes sentences that involve comparative

relations that are formed with certain optimization-related words

(part of XCOMP GOVERNORS in Table 2).

�e third category includes some passive sentences that involve

certain optimization-related keywords (part of XCOMP GOVERNORS

in Table 2).

�e fourth category includes imperative sentences that involve

words included in IMPERATIVE WORDS shown in Table 2. Such a

form of sentence is a frequent form used by suggesting sentences,

and those keywords hint on their relevance with performance opti-

mizations.

�e ��h category includes sentences whose subjects are devel-

oper, programmer, or other special words contained in KEY SUBJECTS

in Table 2.

�e �nal category consists of sentences with a purpose clause

related with performance optimizations.

Except the �rst category, the pa�erns in the other categories

are related with either the syntactic or semantic structure of the

given sentence. We employ a series of NLP techniques to construct

�ve selectors to help recognize the six pa�erns from an arbitrarily

given sentence, as explained next.

3.1.2 Five Selectors. �e �ve selectors we have developed work

in a series. From the �rst to the ��h, they try to check whether the

given sentence meets a certain condition. As long as the sentence

meets the condition of one of the selectors, it is considered to be

an “advising sentence”.

(1) First Selector
�e �rst selector is for the recognition of the �rst category in

Table 1. It is a simple keyword matching process. One minor

complexity is that one word could be in many di�erent variations

of form, such as, “argue”, “argued”, “argues”, and “argument”. We

use the standard stemming technique in NLP to reduce all the

forms into the stem of the word (e.g., “argu”). We do that for all

the words in FLAGGING WORDS and those in the given sentence

before conducting the keyword matching. �e principle rule of this

selector can be formally expressed as follows:

Rule 1. A sentence is an advising sentence if it contains at least
one of the keywords in the FLAGGING WORDS.

(2) Dependency Parsing and Selectors 2,3,4
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Table 1: HPC Advising Sentence Categories.

Categories Pa�erns Example Sentences (w/ key words underlined) Selection Rules (S : a given sen-

tence; Uppercased words: sets

of keywords shown in Table 2)

Key Tech-

niques

I Contains certain

keywords

�is can be a good choice when the host does not read the

memory object to avoid the host having to make a copy of

the data to transfer.

#1: ∃ w in S , w∈ FLAG-

GING WORDS

Keyword

Matching

II Certain kind of

comparative sen-

tences

�us, a developer may prefer using bu�ers instead of im-

ages if no sampling operation is needed.

#2: xcomp(governor,

*), lemma(governor) ∈

XCOMP GOVERNORS

Syntactic

Dependence

Parsing

III Certain kind of

passive sentences

�is synchronization guarantee can o�en be

leveraged to avoid explicit clWaitForEvents() calls

between command submissions.

IV Certain kind

of imperative

sentences

Pinning takes time, so avoid incurring pinning costs where

CPU overhead must be avoided.

#3: ∃v in S , v has no subject

and v ∈ IMPERATIVE WORDS

V Sentences with

certain subjects

For peak performance on all devices, developers can choose

to use conditional compilation for key code loops in the

kernel, or in some cases even provide two separate kernels.

#4: subject(S) ∈ KEY SUBJECTS

VI Sentences with

certain purposes

�e �rst step in maximizing overall memory throughput

for the application is to minimize data transfers with low

bandwidth.

#5: ∃p in the predicate of pur-

pose(S), p ∈ KEY PREDICATES

Semantic

Role Labeling

Table 2: Sets of Keywords Used in the Selectors.

FLAGGING WORDS

{‘be�er’, ‘best performance’, ‘higher performance’, ‘maximum performance’,

‘peak performance’, ‘improve the performance’, ‘higher impact’, ‘more appropriate’,

‘should’, ‘high bandwidth’, ‘bene�t’, ‘high throughput’, ‘prefer’,‘e�ective way’,

‘one way to’, ‘the key to’, ‘contribute to’, ‘can be used to’, ‘can lead to’, ‘reduce’,

‘can help’, ‘can be important’, ‘can be useful’, ‘is important’, ‘help avoid’, ‘can avoid’,

‘instead’, ‘is desirable’, ‘good choice’, ‘ideal choice’, ‘good idea’, ‘good start’, ‘encouraged’}

XCOMP GOVERNORS

{‘prefer’, ‘best’, ‘faster’, ‘be�er’, ‘e�cient’, ‘bene�cial’, ‘appropriate’, ‘recommended’,

‘encouraged’, ‘leveraged’, ‘important’, ‘useful’, ‘required’, ‘controlled’}

IMPERATIVE WORDS

{‘use’, ‘avoid’, ‘create’, ‘make’, ‘map’, ‘align’, ‘add’, ‘change’, ‘ensure’, ‘call’, ‘unroll’,

‘move’, ‘select’, ‘schedule’, ‘switch’, ‘transform’, ‘pack’}

KEY SUBJECTS

{‘programmer’, ‘developer’, ‘application’, ‘solution’, ‘algorithm’, ‘optimization’,

‘guideline’, ‘technique’}

KEY PREDICATES {‘maximize’, ‘minimize’, ‘recommend’, ‘accomplish’, ‘achieve’, ‘avoid’}

�e next three selectors are for categories 2, 3, 4, and 5. As these

categories are all about syntactic structures of the sentence, these

selectors are all based on syntactic dependency parsing. Dependency

parsing is an automatic syntactic analysis approach that analyzes

the grammatical structure of a sentence. It focuses on analyzing bi-

nary asymmetrical relations (called dependency relations) between

words within a sentence [15]. Dependency parsing has recently

a�racted considerable interest in the NLP community due to its

successful applications on problems such as information extrac-

tion and machine translation. A dependency relation is composed

of a subordinate word (called the dependent), a word on which it

depends (called the governor), and an asymmetrical grammatical

relation between the two words.

Figure 2 shows the dependency structures for two example sen-

tences generated by the Stanford CoreNLP dependency parser
2
.

�e dependency relations are represented as arrows pointing from

a governor to a dependent. Each arrow is labeled with a dependency

type. For example, in Figure 2a, the noun developer is a dependent

of the verb prefer with the dependency type nominal subject (nsubj)

while it is a governor of the article a with the dependency type

2
h�p://corenlp.run/

determiner (det). Dependency relations are usually wri�en in the

format: relation(governor, dependent) [8]. �e relations in the two

aforementioned examples are wri�en as nsubj(prefer, developer)

and det(developer, a). For the uniformity of representation, a vir-

tual governor ROOT and a virtual relation “root” are used when

expressing a word without an actual governor in the sentence. For

example, for the verb prefer in the sentence Figure 2a, one may

write the following: root(ROOT, prefer).

Selector 2 takes advantage of dependency parsing to detect sen-

tences in category II (certain comparative sentences) and category

III (certain passive sentences). It speci�cally checks a dependency

relation open clausal complement (xcomp). �e de�nition of xcomp

relations is as follows: �e governor of an xcomp relation is a verb

or an adjective while the dependent is a predicative or clausal com-

plement without its own subject [8]. For example, in Table 1, the

given sentences in categories II and III have relations xcomp(prefer,

using) and xcomp(leveraged, avoid) respectively (the full depen-

dency structures are shown in Figure 2). �e principle rule used by

Selector 2 is as follows:

http://corenlp.run/
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(a) Dependency structure for a sentence in Comparative Sentence category. xcomp(prefer, using).

(b) Dependency structure for a sentence in Passive Sentence category. xcomp(recommended, queue).
Figure 2: Dependency Structure.

Rule 2. A sentence is an advising sentence if it contains the fol-
lowing dependency relation: xcomp(governor, *), where, governor ∈
XCOMP GOVERNORS.

Selector 3 is about the relevant imperative sentences. An impera-

tive sentence is a type of sentence that gives advice or instructions

or that expresses a request or command, as illustrated by the ex-

ample sentence in Table 1 Category IV. Such sentences can be

recognized based on such a feature: �e root verb (i.e., the principal

verb) in the sentence shall have no subject dependent or governor.

�ere are two complexities to note. First, the subject of a verb

could have two types: nominal subject (nsubj) and passive nominal
subject (nsubjpass). A nominal subject is a noun phrase which is the

syntactic subject of a clause, such as “instructions” in the sentence

“the scalar instructions can use up to two SGPR sources per cycle”.

A passive nominal subject is that of a passive clause [15], such

as “allocations” in the sentence “all allocations are aligned on the

16-byte boundary”. Both types of subjects should be checked and

neither should appear in the sentence. Second, the sentence must

at the same time be relevant to HPC optimizations. We notice that

the root verb in such sentences provide good hints in this aspect.

Speci�cally, the selector checks whether the root verb is part of the

IMPERATIVE WORDS in Table 2, and label the imperative sentence

as an HPC advising sentence if so. To address the complexities in

the various verb tenses, we use the lemma of a verb, which is the

verb’s canonical form (e.g., “run” for “runs”, “ran”, “running”). �e

principle rule used by Selector 3 is as follows:

Rule 3. A sentence is an advising sentence if its root verb v meets
both of the following conditions:

(1) root(ROOT, v), lemma(v) ∈ IMPERATIVE WORDS;
(2) v is not in nsubj or nsubjpass dependency relations.

Selector 4 is for category V, sentences with certain kinds of

subjects (e.g., “developers” in the category V example sentence

in Table 1). It �nds out the subjects of a sentence through the

dependency parsing and then checks whether they belong to the

KEY SUBJECTS set. �e principle rule used by this selector is as

follows (lemma gets the canonical form of the words):

Rule 4. A sentence is an advising sentence if it contains the fol-
lowing dependency relation: nsubj(governor, n), where, lemma(n) ∈
KEY SUBJECTS.

(3) Semantic Role Labeling and Selector 5
Selector 5 treats category VI. �is category involves the semantic

roles (e.g., purpose) of the parts of the sentence. �e selector hence

employs semantic role labeling.

Semantic role labeling, also called shallow semantic parsing, is

an approach to detecting the semantic arguments associated with

predicates or verbs of a sentence and classifying them into speci�c

semantic roles. Semantic arguments refer to the constituents or

phrases in a sentence. Semantic roles are representations that

express the abstract roles that arguments of a predicate take that

reveal the general semantic properties of the arguments in the

sentence.

Figure 3 shows an example a�ained through a Semantic Role

Labeling Demo
3

[26]. �e demo follows the de�nition of semantic

roles encoded in the lexical resource PropBank [25] and CoNLL-

2004 shared task [4]. �ere are six di�erent types of arguments

labeled as A0-A5. �ese labels have di�erent semantics for each

verb as speci�ed in the PropBank Frames scheme. In addition, there

are also 13 types of adjuncts labeled as AM-XXX where XXX spec-

i�es the adjunct type. In the example, V is the predicate, A0 the

subject, A1 the object, A2 the indirect object, AM-PNC the purpose.

�e example shows three “SRL” columns, with each correspond-

ing to one semantic role relation centered on one verb. �e �rst

“SRL” column, for instance, centers around verb ‘maximize’. �is

verb takes the meaning of maximize.01 in the PropBank and has a

subject ‘�e �rst step’ and an object ‘overall memory throughput

for the application’. �e purpose argument for the verb ‘be’ also

contains a predicate ‘minimize’ and its object ‘data transfer with

low bandwidth’.

Selector 5 uses semantic role labeling to detect sentences with

purpose clauses. It particularly seeks for the purposes related with

HPC optimizations. �e predicate of the purpose clause usually of-

fers good hints on the relevance. A�er �nding the purpose clause of

the sentence, the selector checks whether the predicate of the clause

belongs to KEY PREDICATES shown in Table 2. �e principal rule

of this selector is put as follows:

Rule 5. A sentence is HPC advising sentence if it meets all the
following conditions:

(1) the sentence contains an argument arд with the semantic
role AM-PNC;

(2) arд contains a predicate v ;
(3) lemma(v) ∈ PREDICATE SET.

We implement the selectors based on some NLP tools. We use

Stanford CoreNLP [21] for dependency parsing, SENNA [5] for

semantic role labeling, and NLTK [2] for word and sentence tok-

enization, word stemming and lemmatization.

�ese tools represent the state-of-the-art of NLP development.

Some steps of these tools (e.g., stemming) are mature with a very

3
h�p://cogcomp.cs.illinois.edu/page/demo view/srl

http://cogcomp.cs.illinois.edu/page/demo_view/srl
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Sentence SRL SRL SRL

The
causer,

agent [A0]

topic [A1]
causer of

smallness,
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Figure 3: Semantic Role Labeling Results for a Sentence.

high accuracy. However, some more complicated steps have a much

less satisfying accuracy (e.g., 75% for the semantic role labeling by

SENNA [5]). �e design of the selectors largely circumvents the

limitations by simplifying the NLP tasks through the integration

of the HPC domain properties. �e categorizations of the pa�erns

divide the overall problem into �ve simpler ones, reducing the

complexities needed to handle by each of the selectors. �at also

reduces the in�uence of the errors from the NLP tools. For instance,

although general semantic role labeling is hard to be accurate, the

design of the selectors only relies on the “purpose” roles, thanks to

the insights a�ained from the examinations of the HPC documents.

Such roles can be recognized by the tool with a much larger accuracy

(88.2%). In addition, each of the selectors incorporates the hints

from some keywords, which also greatly reduces the complexity of

the tasks and the reliances on the NLP analysis.

3.2 Stage II: Knowledge Recommendation
�e second stage of Egeria is relatively easier. We model it as a text

retrieval problem: From the advising sentences found by the �rst

stage, it tries to identify those that are closely related with a given

query. Our exploration shows that two techniques, vector space

model (VSM) and term frequency-inverse document frequency (TF-

IDF), suit the problem well.

VSM [34] is used to represent a sentence (the query or an advising

sentence) in a feature vector form. It prepares for the relevancy

calculations. VSM represents a piece of text as a vector of indexed

terms. Each dimension corresponds to a separate term. If a term

occurs in the text, its value in the vector is non-zero—the exact

value is computed based on TF-IDF [34], one of the best-known

weighting methods. In TF-IDF, the weight vector for a sentence s
is vs = [w1,s ,w2,s , · · · ,wN ,s ]

T
. Each entry is computed as:

wt,s = t ft,s ∗ log

|S |

|{s ′ ∈ S |t ∈ s ′}|
, (1)

where t ft,s is the term frequency of term t in the sentence and

log
|S |

| {s ′∈S |t ∈s ′ } | is the inverse sentence frequency. |S | is the total

number of sentences in the sentence set and |{s ′ ∈ S |t ∈ s ′}| is the

number of sentences containing the term t . �e sentence similarity

between a sentence s and a query q is calcuated as cosine similarity:

sim(s,q) =
vTs vq
‖vd ‖‖vq ‖

. (2)

Our implementation of VSM is based on Gensim [28].

An advising tool produced by Egeria reports the top-ranked sen-

tences (having the similarity score no less than 0.15) as the answer

to user’s query. To make the sentences easy to understand, the

answer is shown in an HTML web page with the hyper references

associated with the sentences that link to the paragraph in the orig-

inal document. �e advising tool contains an interface for inpu�ing

queries. Besides directly inpu�ing queries, users may also upload

a performance report of a program execution as the query. Egeria

currently supports GPU performance reports (a PDF �le output

from NVIDIA NVPP
4
), from which, the advising tools by Egeria can

�nd the described key performance issues through simple regular

expression based search according to the report format. (Support to

other commonly used pro�ling reports will be added in the future.)

Egeria itself is a web-based tool. It is equipped with a document

loader (which, for now, is customized for certain HTML documents).

�e loader extracts out all the contained sentences, and at the same

time, infers the document structure (e.g., chapter, section, etc.)

based on the indices or the HTML header tags. �e structure allows

the produced advising tools to be able to provide a richer context

of the advising sentences.

�e design of Egeria, including the selection rules and keywords

and NLP uses, are currently based on our observations about ad-

vising sentences found in HPC guides. �e approach is possible to

apply to non-HPC domains; some extensions in the design (key-

words, rules, NLP uses) might be necessary.

4 EVALUATIONS
We conduct a set of experiments to examine the e�cacy of Egeria.

Our experiments are designed to answer the following three major

questions: 1) Is Egeria useful for programmers in easing their e�orts

in optimizing programs? 2) Do we really need the recognition of

advising sentences for easing the use of programming guides? How

much does it help compared to simple keyword search or other

methods? 3) Do we really need the sophisticated NLP-based design

to recognize advising sentences? How much does it help compared

to other designs?

We next report our experiments and results on each of the three

questions. We start with a case study, showing how Egeria helps

programmers address some performance issues of a CUDA program.

We then provide some detailed examinations of the bene�ts of

the two-staged design of Egeria, and give some comparisons to

alternative methods.

4.1 A Case Study
�e case study focuses on an advising tool generated by Egeria

to show how one can use NVIDIA pro�ler data or questions to

retrieve relevant and helpful tuning advice. We got the advising

tool by applying Egeria on the NIVIDA CUDA Programming Guide
5
,

which was created to guide the development or optimizations of

code to run on NVIDIA GPUs. We call the tool CUDA Adviser.
4
h�ps://developer.nvidia.com/nvidia-visual-pro�ler

5
h�ps://docs.nvidia.com/cuda/cuda-c-programming-guide/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
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Table 3: Subsections from an Example NVVP Report for Indicating Performance Issues (with the descriptions abridged).

Subsection Description

GPU Utilization

May Be Limited By

Register Usage

�eoretical occupancy is less than 100% but is large enough that increasing occupancy may not improve performance.

… �e kernel uses 31 registers for each thread (7936 registers for each block)…

Divergent Branches

Compute resource are used most e�ciently when all threads in a warp have the same branching behavior. When this

does not occur the branch is said to be divergent. Divergent branches lower warp execution e�ciency which leads to

ine�cient use of the GPU’s compute resources….

5. Performance Guidelines
5.1. Overall Performance Optimization Strategies

● Performance optimization revolves around three basic strategies: Maximize parallel execution to achieve maximum utilization; Optimize memory usage to achieve maximum 
memory throughput; Optimize instruction usage to achieve maximum instruction throughput.

● Which strategies will yield the best performance gain for a particular portion of an application depends on the performance limiters for that portion; optimizing instruction 
usage of a kernel that is mostly limited by memory accesses will not yield any significant performance gain, for example.

● Optimization efforts should therefore be constantly directed by measuring and monitoring the performance limiters, for example using the CUDA profiler.

5.2. Maximize Utilization
5.2.3. Multiprocessor Level

● At an even lower level, the application should maximize parallel execution between the various functional units within a multiprocessor.
    …… 

● Register usage can be controlled using the maxrregcount compiler option or launch bounds as described in Launch Bounds.
    …… 

● Applications can also parameterize execution configurations based on register file size and shared memory size, which depends on the compute capability of the 
device, as well as on the number of multiprocessors and memory bandwidth of the device, all of which can be queried using the runtime (see reference manual).

● The number of threads per block should be chosen as a multiple of the warp size to avoid wasting computing resources with under-populated warps as much as 
possible.

5.4. Maximize Instruction Throughput

● To maximize instruction throughput the application should: Minimize the use of arithmetic instructions with low throughput; this includes trading precision for speed when it 
does not affect the end result, such as using intrinsic instead of regular functions (intrinsic functions are listed in Intrinsic Functions), single-precision instead of 
double-precision, or flushing denormalized numbers to zero; Minimize divergent warps caused by control flow instructions as detailed in Control Flow Instructions Reduce the 
number of instructions, for example, by optimizing out synchronization points whenever possible as described in Synchronization Instruction or by using restricted pointers as 
described in __restrict__.

5.4.1. Arithmetic Instructions

● cuobjdump can be used to inspect a particular implementation in a cubin object.
    …… 

● As the slow path requires more registers than the fast path, an attempt has been made to reduce register pressure in the slow path by storing some intermediate 
variables in local memory, which may affect performance because of local memory high latency and bandwidth (see Device Memory Accesses).

    …… 
● This last case can be avoided by using single-precision floating-point constants, defined with an f suffix such as 3.141592653589793f, 1.0f, 0.5f.

5.4.2. Control Flow Instructions

● To obtain best performance in cases where the control flow depends on the thread ID, the controlling condition should be written so as to minimize the number of 
divergent warps.

    …… 
● The programmer can also control loop unrolling using the #pragma unroll directive (see #pragma unroll).Figure 4: Retrieved Sentences from Chapter 5 of CUDA Guide for a Given NVVP Report. (Highlighted are recommended

sentences; others, including those omitted ones, are advising sentences in the same subsections as the recommended ones
are.)

Given a query, either an Nvidia Visual Pro�ler(NVVP) report or a

natural language-based query, our CUDA Adviser responds with

recommended sentences. (Users can optionally ask it to also list

all other advising sentences in the subsections containing those

recommended sentences. In that case, the recommended ones will

be highlighted) We do not limit the number of sentences the tool

can suggest. An advising sentence is suggested as long as it is

su�ciently relevant (the similarity threshold is 0.15 as stated in

Section 3.2). In our experiments, the number of suggested sentences

for a query is typically 5–25. In the extreme case that no good

answers exist, the advising tool gives “No relevant sentences found”.

In the case study, 37 graduate students were asked to manu-

ally optimize a sparse matrix manipulation program wri�en using

CUDA. �e program contains a kernel that makes some normaliza-

tion to values in a matrix. �e original program has optimization

potential in multiple aspects, including memory accesses, thread

divergences, loop controls, and cache performance. All students

were given the original CUDA programming guide and were al-

lowed to use any other resources and tools (including NVIDIA GPU

pro�ling tools) in the process, while Egeria were provided to 22

randomly chosen students out of the 37. �ere are two ways that

students could use CUDA Adviser. One is to feed it with an NVVP

report, the other is to directly query it with questions. We gave no

restrictions on how the students can use the tool. �ey typically

started with the �rst approach and then used the second approach

when they had other questions. As a course project, the students

were asked to submit the optimized code and report in two weeks.

An NVVP report usually has four sections. �e �rst section

provides an overview of the performance issues while the later

three sections each describe the problems in each of the three

main aspects: instruction and memory latency; compute resources;

memory bandwidth. Some of the later three sections could be empty

if no issues exist in those aspects.

When fed with an NVVP report, our CUDA Adviser searches

within each section and take subsections that contain the “Opti-

mization:” identi�er as performance issue-related contents. It then

extracts those subsections as performance issue-related contents.
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(a) �e If-else Block from the Original Program.

(b) �e Optimized Block.

Figure 5: Optimization to Minimize �read Divergence.

Table 3 shows the extracted performance issues for the sparse ma-

trix program used in this case study. Each title and its description

are combined to form a query to our CUDA Adviser.
Figure 4 shows the sentences suggested by our CUDA Adviser

given the example NVVP report. For space limitations, it shows only

the sentences selected from Chapter 5 of the CUDA Guide (eight

other sentences were chosen in the other 14 chapters). Besides

the recommended sentences, the �gure also shows some of the

other advising sentences residing in the same subsections as the

suggested sentences do. �e recommended ones are highlighted in

the �gure.

Among the eight recommended sentences, we can see that the

following sentence directly provides suggestions on handling the

“register usage” issue:

Register usage can be controlled using the maxr-

regcount compiler option or launch bounds as de-

scribed in Launch Bounds.

�e following sentence is closely related to the “divergent branches”

issue:

To obtain best performance in cases where the

control �ow depends on the thread ID, the control-

ling condition should be wri�en so as to minimize

the number of divergent warps.

With the response, if users want to learn more details, they can

easily access the corresponding subsections in the original docu-

ment through hyper-links associated with each section/subsection

title in the summary ( these titles are underlined in Figure 4). For ex-

ample, by examining Section 5.4.2. Control Flow Instruction, which

contains the aforementioned recommended sentence on “divergent

branches”, users can �nd the following sentences that explain warp

divergence:

Any �ow control instruction (if, switch, do, for,

while) can signi�cantly impact the e�ective in-

struction throughput by causing threads of the

same warp to diverge (i.e., to follow di�erent ex-

ecution paths). If this happens, the di�erent ex-

ecutions paths have to be serialized, increasing

the total number of instructions executed for this

warp…

�e reports we received from the students in the user study

indicated that the retrieved advising sentence along with its context

from the original document helped them identify an optimization

opportunity on the if-else block shown in Figure 5a. �e optimized

version of the block is shown in Figure 5b which has the if-else

branches removed.

In addition to NVVP reports, students also posted queries to the

advising tool. One example query is “reduce instruction and mem-

ory latency”. �e sentences and corresponding section numbers

returned by the advising tool are listed in Table 4. �e retrieved

nine sentences covered all three aspects of optimizations: maximize

utilization, maximize memory throughput, and maximize instruc-

tion throughput, indicating that a diverse set of optimizations are

available to reduce the instruction and memory latency. Some other

queries were “warp execution e�ciency”, “How to avoid thread

divergence”, “memory access coalescence”, and so on.

According to students’ report and optimized code, optimizations

by the Egeria group included memory optimizations (e.g., “rear-

range memory access instructions”), minimize thread divergences

(e.g., “remove if-else”), increase the amount of parallelism (e.g., “tun-

ing the dimensions of thread blocks and grids”), and minimize the

number of instructions a thread needs to do (e.g. “loop unrolling”).

�e non-Egeria group as a whole covered most of these optimiza-

tions, but an individual in that group typically implemented fewer

optimizations than an individual in the Egeria group did, as with

Egeria, it is easier to identify a comprehensive set of relevant op-

timizations. We did not see a signi�cant di�erence in the amount

of prior GPU experience between the two groups of students. A

quantitative examination of responses’ accuracy and comparison is

in the next subsection.

Table 5 reports the speedups that the students’ optimizations

have achieved on two GPUs of di�erent models over the original

CUDA program. �e much larger speedups obtained by the students

that have used Egeria suggest the usefulness of the advising tool

by Egeria: With its advice, the students were able to be�er target

the set of suitable optimizations in their explorations, which has

saved them time in searching in the original documents or other

resources and has helped prevent them from trying many irrelevant

optimizations.

4.2 Detailed Examination and Comparisons
In this part, we report a deeper examination of the e�ectiveness of

the two-level design featured by Egeria, and compare it with some

alternative methods.

Recall that the key idea of the two-stage design is to �rst recog-

nize advising sentences, and then from them, �nd the sentences

related with the input query. We compare it with two one-stage

methods:

• Keywords method: �is method uses keywords in the input

query to directly search the original programming guide to

�nd relevant sentences. Both the keywords and the words

in the document are reduced to their stem forms to allow

matchings among di�erent variants of a word.

• Full-doc method: �is method also queries the original

programming guide without �rst extracting advising sen-

tences. Unlike the keywords method, this method does not

use keywords, but uses the same knowledge recommen-

dation method as Egeria uses—that is, through the use of

VSM and TF-IDF techniques as Section 3.2 describes.

We applied the several methods to four GPU performance pro�l-

ing reports. �ese reports were collected through an NVIDIA GPU

pro�ling tool (NVPP)
4
, with each containing a detailed description

of the performance issues of a GPU program execution. �e four

reports are for the following four CUDA programs:
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Table 4: Retrieved Sentences from Chapter 5 for the�ery: “reduce instruction and memory latency”.

Section Sentences

5.2.3.

Multiprocessor

Level

�e number of clock cycles it takes for a warp to be ready to execute its next instruction is called the latency, and full

utilization is achieved when all warp schedulers always have some instruction to issue for some warp at every clock cycle

during that latency period, or in other words, when latency is completely ”hidden”.

�e number of instructions required to hide a latency of L clock cycles depends on the respective throughputs of these

instructions (see Arithmetic Instructions for the throughputs of various arithmetic instructions); assuming maximum

throughput for all instructions, it is: L for devices of compute capability 2.0 since a multiprocessor issues one instruction

per warp over two clock cycles for two warps at a time, as mentioned in Compute Capability 2.x, 2L for devices of

compute capability 2.1 since a multiprocessor issues a pair of instructions per warp over two clock cycles for two warps

at a time, as mentioned in Compute Capability 2.x, 8L for devices of compute capability 3.x since a multiprocessor issues

a pair of instructions per warp over one clock cycle for four warps at a time, as mentioned in Compute Capability 3.x.

�e number of warps required to keep the warp schedulers busy during such high latency periods depends on the kernel

code and its degree of instruction-level parallelism.

Having multiple resident blocks per multiprocessor can help reduce idling in this case, as warps from di�erent blocks do

not need to wait for each other at synchronization points.

5.3.2. Device

Memory

Accesses

For example, for global memory, as a general rule, the more sca�ered the addresses are, the more reduced the throughput is.

In general, the more transactions are necessary, the more unused words are transferred in addition to the words accessed by

the threads, reducing the instruction throughput accordingly.

Also, it is designed for streaming fetches with a constant latency; a cache hit reduces DRAM bandwidth demand but not

fetch latency.

5.4. Maximize

Instruction

�roughput

To maximize instruction throughput the application should: Minimize the use of arithmetic instructions with low throughput;

this includes trading precision for speed when it does not a�ect the end result, such as using intrinsic instead of regular

functions (intrinsic functions are listed in Intrinsic Functions), single-precision instead of double-precision, or �ushing

denormalized numbers to zero; Minimize divergent warps caused by control �ow instructions as detailed in Control Flow

Instructions Reduce the number of instructions, for example, by optimizing out synchronization points whenever possible

as described in Synchronization Instruction or by using restricted pointers as described in restrict .

5.4.1. Arithmetic

Instructions

As the slow path requires more registers than the fast path, an a�empt has been made to reduce register pressure in the slow

path by storing some intermediate variables in local memory, which may a�ect performance because of local memory high

latency and bandwidth (see Device Memory Accesses).

Table 5: Speedups on a GPU Program.

GeForce GTX 780 GeForce GTX 480

Average Median Average Median

Group 1: Egeria used 6.27X 5.93X 4.15X 4.43X

Group 2: Egeria not used 4.09X 3.58X 2.59X 2.39X

• knnjoin.cu: a K-Nearest Neighbor (KNN) program that has

thread divergence problems in the kernel;

• knnjoin-opt.cu: knnjoin.cu a�er some task reordering to

reduce the thread divergence for the kernel;

• trans.cu: a matrix transpose that has a large number of

non-coalesced memory accesses;

• trans-opt.cu: trans.cu a�er optimizing the memory ac-

cesses through the use of 2D surface memory.

�e second column in Table 6 lists the top issue(s) of the most

time-consuming kernel of each of the four programs.

We fed the reports into our CUDA advising tool and the full-doc
method; they each returned a set of sentences for each of the reports

as their answers on how to resolve the performance issues in that

report. For the keywords method, we tried a number of keywords

for each performance issue as listed below:

• knnjoin (issue 1): warp, execution, e�ciency, warp e�-

ciency, warp execution e�ciency;

• knnjoin (issue 2): divergence, branch, divergent branch;

• knnjoin opt: memory, alignment, memory alignment, access

pa�ern;

• trans (issue 1): utilization, memory, instruction, memory

instruction;

• trans (issue 2): instruction, latency, instruction latency;

• trans opt: memory, bandwidth, memory bandwidth;

�e underlined are the keywords that yield the best overall results

in terms of F-measure (de�ned in the next paragraph).

Table 6 reports the quality of the results by the three methods.

For keywords method, the table shows only the results by the afore-

mentioned best keywords. �e three metrics we use are commonly

used in information retrieval: precision P (#true positive/#answers),

recall R (#true positive/#groundTruth), and the combined metric

F-measure F = 2 ∗ P ∗R/(P +R). We asked three domain experts to

manually label all the sentences in the CUDA programming guide

regarding whether they are advising sentences relevant for resolv-

ing each of the performance issues listed in Table 6. �e Fleiss’

kappa values [13] (a standard measure for assessing the reliability

of agreement of a number of raters) of the labeling results are all

above 0.8, indicating large agreements among the raters. Majority

vote is used to generate the ground truth answers for each of the

performance issues.

As the “Egeria” column in Table 6 shows, our advising tool

returns most relevant advising sentences, with the recall rates at

83-100%. �e small number of missing sentences are mostly due

to some di�culties in advising sentence recognitions as detailed

in the next sub-section. A fraction (0-35%) of the answers are false

positives for some limitations of the VSM/TF-IDF technique used

for similarity computations. But overall, the advising tool gives

answers signi�cantly be�er than both alternative methods give.
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Table 6: �ality of Answers on Performance�eries.

NVVP

Report

Performance Issues

#ground Egeria Method Full-doc Method Keywords Method

truth P R F P R F P R F

knnjoin

Low Warp Execution E�ciency 6 0.667 1.0 0.8 0.146 1.0 0.255 0.154 1.0 0.267

Divergent Branches 2 0.667 1.0 0.8 0.167 1.0 0.286 0.333 1.0 0.5

knnjoin opt

Global Memory Alignment

and Access Pa�ern
7 1.0 0.857 0.923 0.304 1.0 0.467 0.571 0.571 0.571

trans

GPU Utilization is Limited by

Memory Instruction Execution
8 0.667 1.0 0.8 0.211 1.0 0.348 0.571 0.5 0.533

Instruction Latencies may

be Limiting Performance
11 0.667 0.909 0.769 0.182 0.909 0.303 0.364 0.364 0.364

trans opt

GPU Utilization is Limited

by Memory bandwidth
18 0.652 0.833 0.732 0.308 0.889 0.457 0.545 0.333 0.414

(P: precision; R: recall; F: F-measure)

Because the “full-doc” method uses the same knowledge rec-

ommendation method as the Egeria-based advising tool uses and

advising sentences are part of the original document, this method

�nds all the sentences returned by the Egeria-based CUDA advising

tool. However, it also yields many sentences that are not advising

sentences because it works on the original document. Some of these

sentences, for instance, are detailed explanations of some terms

or concepts, and some are details of some example architectures.

Although these may have some relevancy to the input queries, they

do not give suggestions on how to optimize the program to resolve

the performance issues speci�ed in the queries. An example sen-

tence returned by “full-doc” on how to improve warp execution

e�ciency is

Execution time varies depending on the instruc-

tion, but it is typically about 22 clock cycles for

devices of compute capability 2.x and about 11

clock cycles for devices of compute capability 3.x,

which translates to 22 warps for devices of com-

pute capability 2.x and 44 warps for devices of

compute capability 3.x and higher (still assuming

that warps execute instructions with maximum

throughput, otherwise fewer warps are needed).

It contains a lot of details but no advice for addressing the warp

e�ciency problem. As Table 6 shows, the precision of the returned

results by the full-doc method is only 30% or below.

�e “keywords” method is inferior in both precision and recall.

�e reason is that lots of sentences containing the keywords are not

advising sentences, but explanations of some details or examples.

At the same time, many relevant advising sentences do not contain

the keywords. For instance, consider the following sentence:

To maximize global memory throughput, it is there-

fore important to maximize coalescing by: Fol-

lowing the most optimal access pa�erns based

on Compute Capability 2.x and Compute Capa-

bility 3.x, Using data types that meet the size and

alignment requirement detailed in Device Memory

Accesses, Padding data in some cases, for exam-

ple, when accessing a two-dimensional array as

described in Device Memory Accesses.

It is a useful sentence on how to improve memory bandwidth.

However, it contains no “bandwidth” in it. Although it contains

“memory”, that is such a common word that using it to search, the

Table 7: Statistics in Two Case Studies.

Original document Egeria’s selection Ratio

Documentation sentences (pages) sentences

CUDA Guide
5

2140 (275) 273 7.8

OpenCL Guide
6

1944 (178) 440 4.4

Xeon Guide
7

558 (47) 94 5.9

answer would contain 60 (four times of useful ones) sentences that

are not helpful advices on improving memory bandwidth.

We applied stemming to the keywords and documents to allow

matchings between variants of words. Without stemming, the false

positives of the “keywords” method could get reduced slightly, but

the recall rate would get much lower; the overall results would be

even worse.

4.3 E�ects of the Multilayered Design
�e comparison with the “full-doc” method in the previous subsec-

tions indicate the important bene�ts of using the advising sentences

that Egeria identi�es. Recall that Egeria features a multilayered

NLP-based design for recognizing advising sentences. In this part,

we examine the detailed results of the recognition step, and assess

the bene�ts yielded from that design through some comparisons.

In addition to CUDA Programming Guide
5
, we applied Egeria

to two more documents to show its robustness. �e �rst is the

AMD OpenCL Optimization Guideline
6
, which is wri�en by AMD

for GPUs and fused accelerators it produces. �e second is the

Intel Xeon Phi Best Practice Guide
7
, which is for the guiding pro-

gramming on Intel Xeon Phi coprocessors. Table 7 reports the

statistics of the original documents and those of the output of the

�rst stage (advising sentence recognition) of Egeria. On the three

documents, Egeria selects about 13%-23% of the original sentences

as the advising sentences.

To examine the quality of the recognition, we conducted a deeper

examination on these documents (only one chapter from the �rst

two documents). We asked three domain experts to manually label

all the sentences from Chapter 5 Performance Guidelines of CUDA

Programming Guide, Chapter 2 OpenCL Performance and Optimiza-
tion for GCN Devices of OpenCL Optimization Guide, and the entire

Xeon document as advising sentences or non-advising sentences.

6
h�p://developer.amd.com/tools-and-sdks/opencl-zone/

amd-accelerated-parallel-processing-app-sdk/opencl-optimization-guide/

7
h�p://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/opencl-optimization-guide/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/opencl-optimization-guide/
http://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/
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Table 8: Evaluation of Advising Sentence Recognition on�ree Guides.

CUDA (chapter 5) OpenCL (chapter 2) Xeon

Methods

Sel.

Sents

Correct P R F

Sel.

Sents

Correct P R F

Sel.

Sents

Correct P R F

Keyword 39 31 0.795 0.596 0.681 60 51 0.850 0.398 0.543 60 55 0.917 0.458 0.611

Comparative 5 4 0.800 0.077 0.140 18 15 0.833 0.117 0.205 2 2 1.0 0.017 0.033

Imperative 0 0 0 0 0 76 22 0.880 0.172 0.288 11 8 0.727 0.067 0.122

Subject 12 10 0.833 0.192 0.312 28 19 0.679 0.148 0.244 14 14 1.0 0.117 0.209

Purpose 23 21 0.913 0.404 0.560 17 15 0.882 0.117 0.207 17 16 0.941 0.133 0.234

KeywordAll 107 52 0.486 1.00 0.654 258 103 0.399 0.805 0.534 260 100 0.385 0.833 0.526

Egeria 59 48 0.814 0.923 0.865 126 102 0.810 0.797 0.803 94 85 0.904 0.708 0.794

(P: precision; R: recall; F: F-measure)

As some sentences appear vague in whether they provide advice

on optimizations, there are slight discrepancies among the labels

by di�erent experts. �e Fleiss’ kappa value [13] of the labeling re-

sults is above 0.85 for the three guides, indicating large agreements

among the raters. �rough majority voting, we identify 52 out of

177 sentences of CUDA, 128 out of 556 sentences of OpenCL, and

120 out of 558 as the actual advising sentences; we use them as the

ground truth.

We compared the recognition results of Egeria with the ground

truth. �e bo�om row in Table 8 gives the results of Egeria. It suc-

cessfully selects most of the advising sentences with only few false

positives. �e precisions are over 81%, the recall rates are 92%, 80%,

71% on the three guides respectively, and the F-measure values are

86%, 80%, 79%. Note that Egeria uses the same sets of con�gurations

(selectors in Table 1 and keywords in Table 2) for advising sentence

recognition from the three distinct documents. A �ne tuning of the

list of keywords can further improve the performance. For example,

given the Xeon guide, a�er we added one extra keyword into the

FLAGGING WORDS list (‘have to be’) and two extra keywords into

KEY SUBJECTS list (‘user’, ‘one’), the recall is improved to 0.892

with precision equaling 0.877.

�e false negatives and false positives come from two main

reasons. (1) Some sentences are ambiguous in whether they are

advising sentences. An example is: “Native functions are generally

supported in hardware and can run substantially faster, although

at somewhat lower accuracy.” �e ambiguity even causes some dis-

crepancy among human raters as mentioned earlier. (2) �e second

reason is the mistakes made by NLP techniques. NLP techniques,

especially semantic analysis, are yet to be improved in e�ectiveness.

For example, an advising sentence is “As shown below, program-

mers must carefully control the bank bits to avoid bank con�icts as

much as possible.”. �eoretically speaking, this sentence meets the

criteria of our selector VI (in Table 1) as a sentence with a purpose

to avoid bank con�icts. However, the semantic role labeling tool

failed to recognize “avoid bank con�icts” as a purpose argument in

the sentence. �e sentence was hence misclassi�ed. Our design of

selectors have already alleviated the limitations by simplifying the

NLP tasks through the integration of the HPC domain properties

and by combining the strengths of the multi-layered analysis. But

avoiding all errors is di�cult. As NLP techniques get be�er, the

errors will be further reduced.

For comparison, the top �ve rows in Table 8 report the results

if each of the �ve selectors in the multilayered design of Egeria is

used alone, and the sixth row (KeywordAll) reports the result when

we apply the �rst selector (the keyword-based selector) but use the

union of all the keywords used in all selectors as the replacement

of the FLAGGING WORDS. Some of these methods could achieve

a good precision or recall, but at the time, su�er seriously on the

other metric. KeywordAll, for instance, �nds all the true sentences,

but at the same time, �nds some sentences which contain some of

the keywords but are not actual advising sentences. An example

sentence is “�is section provides some guidance for experienced

programmers who are programming a GPU for the �rst time”. �e

sentence contains the keyword programmer but is not an advising

sentence. By combining keywords with syntactic and semantic

constraints e�ectively, Egeria avoids most of the false positives

while missing only few true sentences. �e results show that Egeria

o�ers signi�cantly be�er results than each of the alternatives.

5 RELATEDWORK
�e importance of tools for HPC has been well recognized. �rough

the years, many high quality HPC tools have been developed.

HPCToolkit [1] provides a set of tools for pro�ling and analyzing

HPC program executions. Other tools for performance pro�ling

include some code-centric tools (e.g., VTune [29], Opro�le [17],

CodeAnalyst [10], and Gprof [14]) and some other data-centric

tools [3, 16, 18, 19, 22]. Just for GPU, there are numerous perfor-

mance pro�ling tools (e.g., NVVP [24], NVProf [24], CodeXL [31],

GPU PerfStudio [32], Snapdragon [27]. �ere have also been many

pro�ling tools developed for data centers and cloud (e.g., Perf-

Compass [9]). All these tools have concentrated on measuring the

various performance aspects of an execution and identifying the

main performance issues, rather than creating advising tools for

o�ering advice on how to �x the issues.

�e advising tools produced by Egeria are some kind of question-

answer (QA) systems. QA systems have been developed in some

other domains. Watson, for instance, is a QA system developed in

IBM’s DeepQA project [11]. �e system was speci�cally developed

to answer questions on the quiz show Jeopardy!. It has been later

extended to the health care domain [12]. Egeria di�ers from those

QA systems in two key aspects. First, Egeria itself is not a QA system

but a generator of QA systems for various HPC domains. Second,

traditional constructions of a QA system usually require lots of

manual work. Egeria, on the other hand, produces the advising

tools with no or minimum manual inputs (if the user decides to

extend the set of keywords with some domain-speci�c ones). �ese

appealing features are especially important for HPC because of the

many subdomains it contains and the continuous fast evolvement

of these domains.

NLP has been used in so�ware engineering broadly. For in-

stance, it has been used for some bug report classi�cation [36], bug
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report summarization [20], bug severity prediction [33], and rele-

vant source �les retrieval [35]. �e goals of those work di�er from

the recognition of advising sentences. For instance, report summa-

rization aims at creating a representative summary or abstract of

a report [7]. It focuses on �nding the most informative sentences,

which may not be advising sentences. �e di�erent goals of Egeria

motivate its unique design and distinctive ways to leverage NLP

techniques.

6 CONCLUSIONS
We developed a framework named Egeria, which integrates ex-

isting NLP tools and domain knowledge, for auto-construction of

HPC advising tools. Such advising tools provide users with a list

of important optimization guidelines to remind them of available

optimization rules, and can also suggest related optimization advice

based on the performance issues of a program or questions from a

user. We propose an unsupervised approach to recognizing advis-

ing sentences that distinctively integrates HPC domain properties

with NLP techniques for a multilayered treatment of the problem.

We performed our experiments on CUDA, OpenCL, and Xeon Phi

optimization documents to demonstrate the usage of Egeria. A

series of quantitative and qualitative evaluations demonstrate the

e�ectiveness of Egeria in producing useful advising tools.
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A ARTIFACT DESCRIPTION: EGERIA: A
FRAMEWORK FOR AUTOMATIC
SYNTHESIS OF HPC ADVISING TOOLS
THROUGHMULTI-LAYERED NATURAL
LANGUAGE PROCESSING

A.1 Abstract
�e description contains the information needed to launch/use our

Egeria system. We explain how to launch the CUDA advisor used in

our case study and also how to extend it to other HPC documents.

A.2 Description
�is artifact consists of two parts: the Egeria framework for creating

advising tools, and several advising tools that we have already built

with Egeria. �is description is mainly about the Egeria framework.

�e �le README.md inside this artifact package (downloadable

from Github as instructed below) explains the advising tools.

A.2.1 Check-list (artifact meta information).
• Algorithm: Semantic Role Labeling (SRL), Dependency

Parsing, Word Tokenization, Stemming, Normalization,

Term Frequency-Inverse Document Frequency (TF-IDF),

Vector Space Model (VSM)

• Program: Python 2.7.10, HTML.

• Data set: CUDA Programming Guide(HTML), OpenCL

Optimization Guide(HTML), Xeon Best Practice Guide(HTML).

• Output: suggestions (i.e., advising sentences) on program

optimization given a query.

• Experiment customization: set of keywords used in

the selectors, number of worker processes, IP address, port

number.

A.2.2 How so�ware can be obtained (if available). �e code can

be cloned from Github: h�ps://github.com/guanh01/Egeria-demo.

�e code contains the three advising tools(cuda, opencl, and xeon)

generated using Egeria and also the Egeria utilities.

A.2.3 So�ware dependencies. Our system uses the following

packages: CoreNLP 3.7.0, Pycorenlp 0.3.0, Practnlptools 1.0, NLTK

3.2.1, Gensim 0.12.4, Textract 1.5.0, Gunicorn 19.6.0, Flask 0.11.1,

BeautifulSoup 4.4.1.

• CoreNLP: We use the dependency parsing annotator in

CoreNLP to mark dependencies among di�erent parts of

a sentence as part of the advising sentence recognition

process, the �rst stage of Egeria. Enable CoreNLP server

�rst to use the python wrapper Pycorenlp.

• Practnlptools: It provides a fast implementation of SENNA,

one of the state-of-the-art Semantic Role Labeling algo-

rithms.

• NLTK: English SnowballStemmer, WordNetLemmatizer,

stopwords, word tokenize and sent tokenize are used for

basic text preprocessing.

• Gensim: We use the TF-IDF and VSM model for sentence

similarity search (knowledge recommendation).

• Textract: �e package handles the parsing of pdf (NVVP

reports generated from the NIVIDA Visual Pro�ler)

• Others: �e packages provide web functionalities.

A.2.4 Datasets. We have three demo advising tools; each is for

one of the HTML-based HPC documents: CUDA Programming

Guide, OpenCL Optimization Guide, and Xeon Best Practice Guide.

Other HPC documents can be easily processed with li�le extra

work (need the parser to convert the document into a sequence of

text blocks).

A.3 Installation
To launch a demo advising tool (e.g. the CUDA advisor):

• Install the following dependencies: Gunicorn, Flask, Tex-

tract, Gensim, NLTK, BeautifulSoup.

• Open the project folder and setup the host IP address (host)

and the port number (port) in con�guration �les.

• Run in the command line (Linux only):

./run.sh

�e default set of keywords used in the selectors are shown in

Table 2 in the paper. �e demo will automatically create a website

with a webpage presenting the advising sentences generated by

Egeria for CUDA Programming Guide as Figure 6. On top are

two bu�ons (Choose File and Upload) through which users can

upload performance reports (e.g., NVVP reports) as queries. �ey

can also directly type in queries into the search box at the upper

right corner of the webpage. �e answers to the queries will then

be displayed on the webpage as Figure 7 illustrates.

�e source package includes Egeria utilities for construction of

advising tools for other documents. �e main process is as follows:

(1) Preprocess the documents into a sequence of text blocks.

Since a raw document can be in various formats (e.g., txt,

pdf, HTML, JSON, etc.), we do not provide a general API

for this conversion.

(2) Enable CoreNLP according to the description on the o�cial

website
8
.

(3) (Optional) Customize the set of keywords used in the se-

lectors by modifying the con�guration �le: Con�g.py.

(4) Invoke Egeria, which will synthesize an advising tool for

the new documents and display a webpage similar to Fig-

ure 6 but with the new advising sentences contained.

Users can then input queries to the advising tool through the web

interface.

A.4 Experiment work�ow
In Section 4 of the paper, we describe two ways in which we evaluate

the quality of Egeria’s optimization advice. Firstly, we asked domain

experts to manually label sentences as advising or non-advising to

generate the ground truth. �e labeled data is used to evaluate the

result of our advising sentence recognition method and the quality

of the answers on performance queries. �e labeled data, NVVP

reports (used as queries), and the programs to generate reports are

available on Github.

Secondly, we performed one case study which focused on an

advising tool generated by Egeria with CUDA Programming Guide

to show how one can use NVIDIA pro�ler data or questions to

retrieve relevant and helpful tuning advice. In the case study, 37

graduate student were asked to manually optimize a program writ-

ten using CUDA. Only a subset of students were given access to

the advising tool. �e program used in the experiment: norm.cu,

is available on Github. �e website that is available to students is

shown in Figure 6. An example response is shown in Figure 7. �e

highlighted sentences are the recommended advising sentences.

For a be�er understanding of these optimization instructions, we

8
h�p://stanfordnlp.github.io/CoreNLP/corenlp-server.html

https://github.com/guanh01/Egeria-demo
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Figure 6: �e initial webpage created by the demo, displaying the advising sentences of CUDA Programming Guide. �e two
buttons on top allow users to upload a performance report in PDF as a query. �e search box at the right top corner allows
users to directly input queries.

Figure 7: An example response to a query: How to increase warp execution e�ciency. �e tool automatically generates a
HTML �le to report the answers to the query. �e �le shows both the answers (highlighted sentences) and some context
sentences of the answers. By clicking the hyper-links, users can easily view the part in the original document containing the
answers.

provide links from these sentences back to the original document.

�e response webpage also shows other advising sentences in the

same section.

A.5 Evaluation and expected result
�e overall usefulness of Egeria is evaluated qualitatively through

one case study and further examined quantitatively through com-

parison with other two methods. Details of these methods are

described in Section 4.2. An example of expected results is shown

in Figure 7 with the recommended advising sentences highlighted

in yellow.

A.6 Experiment customization
�e vocabulary is constructed based on the summary while the

TF-IDF model is built on the whole document for more accurate

weights for each indexed word.

�e default similarity threshold to recommend a sentence is 0.15.

A smaller threshold will lead to more sentence suggestions.
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