
NumaPerf: Predictive NUMA Profiling
Xin Zhao

University of Massachusetts Amherst
zhao@umass.edu

Jin Zhou
University of Massachusetts Amherst

jinzhou@umass.edu

Hui Guan
University of Massachusetts Amherst

huiguan@cs.umass.edu

Wei Wang
University of Texas at San Antonio

wei.wang@utsa.edu

Xu Liu
North Carolina State University

xliu88@ncsu.edu

Tongping Liu
University of Massachusetts Amherst

tongping@umass.edu

Abstract
It is extremely challenging to achieve optimal performance
of parallel applications on a NUMA architecture, which ne-
cessitates the assistance of profiling tools. However, exist-
ing NUMA-profiling tools share some similar shortcomings,
such as portability, effectiveness, and helpfulness issues. This
paper proposes a novel profiling tool–NumaPerf–that over-
comes these issues. NumaPerf aims to identify potential
performance issues for any NUMA architecture, instead of
only on the current hardware. To achieve this, NumaPerf
focuses on memory sharing patterns between threads, instead
of real remote accesses. NumaPerf further detects potential
thread migrations and load imbalance issues that could sig-
nificantly affect the performance but are omitted by existing
profilers. NumaPerf also identifies cache coherence issues
separately that may require different fix strategies. Based on
our extensive evaluation, NumaPerf is able to identify more
performance issues than any existing tool, while fixing these
bugs leads to significant performance speedup.

ACM Reference Format:
Xin Zhao, Jin Zhou, Hui Guan, Wei Wang, Xu Liu, and Tongping Liu.
2021. NumaPerf: Predictive NUMA Profiling. In 2021 International
Conference on Supercomputing (ICS ’21), June 14–17, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3447818.3460361

1 Introduction
The Non-Uniform Memory Access (NUMA) is the de facto
design to address the scalability issue with an increased num-
ber of hardware cores. Compared to the Uniform Memory
Access (UMA) architecture, the NUMA architecture avoids
the bottleneck of one memory controller by allowing each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8335-6/21/06. . . $15.00
https://doi.org/10.1145/3447818.3460361

node/processor to concurrently access its own memory con-
troller. However, the NUMA architecture imposes multiple
system challenges for writing efficient parallel applications,
such as remote accesses, interconnect congestion, and node
imbalance [5]. User programs could easily suffer from signifi-
cant performance degradation, necessitating the development
of profiling tools to identify NUMA-related performance is-
sues.

General-purpose profilers, such as gprof [12], perf [11],
or Coz [9], are not suitable for identifying NUMA-related
performance issues [24, 30] because they are agnostic to the
architecture difference. To detect NUMA-related issues, one
type of tools simulates cache activities and page affinity based
on the collected memory traces [29, 33]. However, they may
introduce significant performance slowdown, preventing their
uses even in development phases. In addition to this, another
type of profiler employs coarse-grained sampling to identify
performance issues in the deployment environment [14, 18,
24, 26, 32, 35], while the third type builds on fine-grained
instrumentation that could detect more performance issues
but with a higher overhead [10, 30].

However, the latter two types of tools share the follow-
ing common issues. First, they mainly focus on one type of
performance issues (i.e., remote accesses), while omitting
other types of issues that may have a larger performance
impact. Second, they have limited portability that can only
identify remote accesses on the current NUMA hardware. The
major reason is that they rely on the physical node informa-
tion to detect remote accesses, where the physical page a
thread accesses is located in a node that is different from
the node of the current thread. However, the relationship be-
tween threads/pages with physical nodes can be varied when
an application is running on different hardware with differ-
ent topology, or even on the same hardware at another time.
That is, existing tools may miss some remote accesses caused
by specific binding. Third, existing tools could not provide
sufficient guidelines to fix these issues. Users have to spend
significant effort to figure out the corresponding fix strategy
by themselves.

This paper proposes a novel tool—NumaPerf—that over-
comes these issues. NumaPerf is designed as an automatic
tool that does not require human annotation or changing the
code. It also does not require new hardware, or the change

https://doi.org/10.1145/3447818.3460361
https://doi.org/10.1145/3447818.3460361
https://doi.org/10.1145/3447818.3460361

ICS ’21, June 14–17, 2021, Virtual Event, USA Xin Zhao, Jin Zhou, Hui Guan, Wei Wang, Xu Liu, and Tongping Liu

of the underlying operating system. NumaPerf aims to de-
tect NUMA-related issues in development phases, when ap-
plications are exercised with representative inputs. In this
way, there is no need to pay additional and unnecessary run-
time overhead in deployment phases. We further describe
NumaPerf’s distinctive goals and designs as follows.

First, NumaPerf aims to detect some additional types of
NUMA performance issues, while existing NUMA profil-
ers could only detect remote access. The first type is load
imbalance among threads, which may lead to memory con-
troller congestion and interconnect congestion. The second
type is cross-node migration, which turns all previous local
accesses into remote accesses. Based on our evaluation, cross-
node migration may lead to 4.2× performance degradation for
fluidanimate. However, some applications may not have
such issues, which require the assistance of profiling tools.

Second, it proposes a set of architecture-independent and
scheduling-independent mechanisms that could predictively
detect the above-mentioned issues on any NUMA architec-
ture, even without running on a NUMA machine. NumaPerf’s
detection of remote accesses is based on a key observation:
memory sharing pattern of threads is an invariant determined
by the program logic, but the relationship between threads/-
pages and physical nodes is architecture and scheduling de-
pendent. Therefore, NumaPerf focuses on identifying mem-
ory sharing pattern between threads, instead of the specific
node relationship of threads and pages, since a thread/page
can be scheduled/allocated to/from a different node in a dif-
ferent execution. This mechanism not only simplifies the
detection problem (without the need to track the node in-
formation), but also generalizes to different architectures
and executions (scheduling). NumaPerf also proposes an
architecture-independent mechanism to measure load imbal-
ance based on the total number of memory accesses from
threads: when different types of threads have a different num-
ber of total memory accesses, then this application has a
load imbalance issue. NumaPerf further proposes a method
to predict the probability of thread migrations. NumaPerf
computes a migration score based on the contending num-
ber of synchronizations, and the number of condition and
barrier waits. Overall, NumaPerf predicts a set of NUMA
performance issues without the requirement of testing on a
NUMA machine, where its basic ideas are further discussed
in Section 2.2.

Last but not least, NumaPerf aims to provide more help-
ful information to fix NUMA performance issues. First, it pro-
poses a set of metrics to measure the seriousness of different
performance issues, preventing programmers from spending
unnecessary efforts on insignificant issues. Second, its report
could guide users for a better fix. For load imbalance issues,
NumaPerf suggests a thread assignment that could achieve
much better performance than existing work [1]. For remote
accesses, there exist multiple fix strategies with different lev-
els of improvement. Currently, programmers have to figure

out a good strategy by themselves. In contrast, NumaPerf
supplies more information to assist fixes. It separates cache
false sharing issues from true sharing and page sharing so
that users can use the padding to achieve better performance.
It further reports whether the data can be duplicated or not by
confirming the temporal relationship of memory reads/writes.
It also reports threads accessing each page, which helps con-
firm whether a block-wise interleave with the thread binding
will have a better performance improvement.

We performed extensive experiments to verify the effec-
tiveness of NumaPerfwith widely-used parallel applications
(i.e., PARSEC [4]) and HPC applications (e.g., AMG2006 [17],
lulesh [15], and UMT2013 [16]). Based on our evaluation,
NumaPerf detects many more performance issues than the
combination of all existing NUMA profilers, including both
fine-grained and coarse-grained tools. After fixing such issues,
these applications could achieve up to 5.94× performance im-
provement. NumaPerf’s helpfulness on fixing performance
issues is also exemplified by multiple case studies. Over-
all, NumaPerf imposes less than 6× performance overhead,
which is orders of magnitude faster than the previous state-of-
the-art in the fine-grained analysis. The experiments also con-
firm that NumaPerf’s detection is architecture-independent,
which is able to identify most performance issues when run-
ning on a non-NUMA machine.

Overall, NumaPerf makes the following contributions.

• NumaPerf proposes a set of architecture-independent
and scheduling-independent methods that could predic-
tively detect NUMA-related performance issues, even
without evaluating on a specific NUMA architecture.

• NumaPerf is able to detect a comprehensive set of
NUMA-related performance issues, where some are
omitted by existing tools.

• NumaPerf designs a set of metrics to measure the
seriousness of performance issues, and provides helpful
information to assist their fixes.

• We have performed extensive evaluations to confirm
NumaPerf’s effectiveness and overhead.

Outline
The remainder of this paper is organized as follows. Section 2
introduces the background of NUMA architecture and the ba-
sic ideas of NumaPerf. Then Section 3 presents the detailed
implementation and Section 4 shows experimental results.
After that, Section 5 explains the limitation and Section 6
discusses related work in this field. In the end, Section 7
concludes this paper.

2 Background and Overview
This section starts with the introduction of the NUMA ar-
chitecture and potential performance issues. Then it briefly
discusses the basic idea of NumaPerf to identify such issues.

NumaPerf: Predictive NUMA Profiling ICS ’21, June 14–17, 2021, Virtual Event, USA

2.1 NUMA Architecture
Traditional computers use the Uniform Memory Access (UMA)
model. In this model, all CPU cores share a single memory
controller such that any core can access the memory with the
same latency (uniformly). However, the UMA architecture
cannot accommodate the increasing number of cores because
these cores may compete for the same memory controller.
The memory controller becomes the performance bottleneck
in many-core machines since a task cannot proceed without
getting its necessary data from the memory.

DR
AM

	

Processor	1	

Core	1	 Core	2	

Core	N	……	

DR
AM

	

Processor	3	

Core	1	 Core	2	

Core	N	……	

DR
AM

	

Processor	2	

Core	1	 Core	2	

Core	N	……	

Processor	4	

Core	1	 Core	2	

Core	N	……	 DR
AM

	
Domain	1	

Domain	3	 Domain	4	

Domain	2	

Figure 1. A NUMA architecture with four nodes/domains

The Non-Uniform Memory Access (NUMA) architecture
is proposed to solve this scalability issue, as further shown
in Figure 1. It has a decentralized nature. Instead of mak-
ing all cores waiting for the same memory controller, the
NUMA architecture is typically equipped with multiple mem-
ory controllers, where each controller serves a group of CPU
cores (called a “node” or “processor” interchangeably). In-
corporating multiple memory controllers largely reduces the
contention for memory controllers and therefore improves
the scalability correspondingly. However, the NUMA archi-
tecture also introduce multiple sources of performance degra-
dations [5], including Cache Contention, Node Imbalance,
Interconnect Congestion, and Remote Accesses.

Cache Contention: the NUMA architecture is prone to
cache contention, including false and true sharing. False shar-
ing occurs when multiple tasks may access distinct words in
the same cache line [3], while different tasks may access the
same words in true sharing. For both cases, multiple tasks
may compete for the shared cache. Cache contention will
cause more serious performance degradation, if data has to
be loaded from a remote node.

Node Imbalance: When some memory controllers have
much more memory accesses than others, it may cause the
node imbalance issue. Therefore, some tasks may wait more
time for memory access, thwarting the whole progress of a
multithreaded application.

Interconnect Congestion: Interconnect congestion occurs
if some tasks are placed in remote nodes that may use the
inter-node interconnection to access their memory.

Remote Accesses: In a NUMA architecture, local nodes
can be accessed with less latency than remote accesses. There-
fore, it is important to reduce remote access to improve per-
formance.

2.2 Basic Idea
Existing NUMA profilers mainly focus on detecting remote
accesses, while omitting other performance issues. In con-
trast, NumaPerf has different design goals as follows. First,
it aims to identify different sources of NUMA performance is-
sues, not just limited to remote accesses. Second, NumaPerf
aims to design architecture- and scheduling-independent ap-
proaches that could report performance issues in any NUMA
hardware. Third, it aims to provide sufficient information to
guide bug fixes.

For the first goal, NumaPerf detects NUMA issues caused
by cache contention, node imbalance, interconnect conges-
tion, and remote accesses, where existing work only considers
remote accesses. Cache contention can be either caused by
false or true sharing, which may impose a larger performance
impact and require a different fix strategy. Existing work
never separates them from normal remote accesses. In con-
trast, NumaPerf designs a separate mechanism to detect
such issues by tracking possible cache invalidations caused
by cache contention. It is infeasible to measure all node imbal-
ance and interconnect congestion without knowing the actual
memory and thread binding. Instead, NumaPerf focuses on
one specific type of issues, which is workload imbalance be-
tween different types of threads. Existing work omits one type
of remote access caused by thread migration, where thread
migration will make all local accesses remotely. NumaPerf
identifies whether an application has a higher chance of thread
migrations, in addition to normal remote accesses. Overall,
NumaPerf detects more NUMA performance issues than
existing NUMA profilers. However, the challenge is to design
architecture- and scheduling-independent methods.

The second goal of NumaPerf is to design architecture-
and scheduling approaches that do not bind to specific hard-
ware. Detecting remote accesses is based on the key observa-
tion of Section 1: if a thread accesses a physical page that was
initially accessed by a different thread, then this access will be
counted as remote access. This method is not bound to specific
hardware, since memory sharing patterns between threads are
typically invariant across multiple executions. NumaPerf
tracks every memory access in order to identify the first
thread working on each page. Due to this reason, NumaPerf
employs fine-grained instrumentation, since coarse-grained
sampling may miss the access from the first thread. Based
on memory accesses, NumaPerf also tracks the number of
cache invalidations caused by false or true sharing with the
following rule: a write on a cache line with multiple copies
will invalidate other copies. Since the number of cache invali-
dations is closely related to the number of concurrent threads,
NumaPerf divides the score with the number of threads to

ICS ’21, June 14–17, 2021, Virtual Event, USA Xin Zhao, Jin Zhou, Hui Guan, Wei Wang, Xu Liu, and Tongping Liu

achieve a similar result with a different number of concurrent
threads, as further described in Section 3.2.3. Load imbalance
will be evaluated by the total number of memory accesses of
different types of threads. It is important to track all memory
accesses including libraries for this purpose. To evaluate the
possibility of thread migration, NumaPerf proposes to track
the number of lock contentions and the number of condition
and barrier waits. Similar to false sharing, NumaPerf elimi-
nates the effect caused by concurrent threads by dividing with
the number of threads. The details of these implementations
can be seen in Section 3 .

For the third goal, NumaPerf utilizes the data-centric
analysis as in existing work [24]. That is, it could report the
callsite of heap objects that may have NUMA performance
issues. In addition, NumaPerf aims to provide useful infor-
mation that helps bug fixes, which could be easily achieved
when all memory accesses are tracked. NumaPerf provides
word-based access information for cache contentions, helping
programmers to differentiate false or true sharing. It pro-
vides threads information on page sharing (help determining
whether to use block-wise interleave), and reports whether
an object can be duplicated or not by tracking the temporal
read/write pattern. NumaPerf also predicts a good thread as-
signment to achieve better performance for load imbalance is-
sues. In summary, many of these features require fine-grained
instrumentation in order to avoid false alarms.

Due to the reasons mentioned above, NumaPerf utilizes
fine-grained memory accesses to improve the effectiveness
and provide better information for bug fixes. NumaPerf em-
ploys compiler-based instrumentation in order to collect mem-
ory accesses to address performance and flexibility concern.
An alternative approach is to employ binary-based dynamic
instrumentation [7, 25, 27], which may introduce more per-
formance overhead but without an additional compilation
step. NumaPerf inserts an explicit function call for each
read/write access on global variables and heap objects, while
accesses on stack variables are omitted since they typically
do not introduce performance issues. To track thread migra-
tion, NumaPerf also intercepts synchronizations. To support
data-centric analysis, NumaPerf further intercepts memory
allocations to collect their callsites.

Figure 2 summarizes NumaPerf’s basic idea. NumaPerf
includes two components, NumaPerf-Static and NumaPerf-
Dynamic. NumaPerf-Static is a static compile-time based
tool that inserts a function call before every memory access
on heap and global variables, which compiles a program into
an instrumented executable file. Then this executable file will
be linked to NumaPerf-Dynamic so that NumaPerf could
collect memory accesses, synchronizations, and information
of memory allocations. NumaPerf then performs detection
on NUMA-related performance issues, and reports to users
in the end. More specific implementations are discussed in
Section 3.

NumaPerf-Static

Program

Access
Instrumentation

NumaPerf-Dynamic

Compile

Link

Report

Track
Accesses

Track
Syncs

Detection Engine

Track
Allocations

Figure 2. Overview of NumaPerf

3 Design and Implementation
This section elaborates NumaPerf-Static and NumaPerf-
Dynamic. NumaPerf leverages compiler-based instrumen-
tation (NumaPerf-Static) to insert a function call before
memory access, which allows NumaPerf-Dynamic to col-
lect memory accesses. NumaPerf utilizes a pre-load mecha-
nism to intercept synchronizations and memory allocations,
without the need of changing programs explicitly. Detailed
design and implementation are discussed as follows.

3.1 NumaPerf-Static
NumaPerf’s static component (NumaPerf-Static) performs
the instrumentation on memory accesses. In particular, it uti-
lizes static analysis to identify memory accesses on heap and
global variables, while omitting memory accesses on static
variables. Based on our understanding, static variables will
never cause performance issues, if a thread is not migrated.
NumaPerf-Static inserts a function call upon these memory
accesses, where this function is implemented in NumaPerf-
Dynamic library. In particular, this function provides detailed
information on the access, including the address, the type (i.e.,
read or write), and the number of bytes.
NumaPerf employs the LLVM compiler to perform the

instrumentation [20]. It chooses the intermediate representa-
tion (IR) level for the instrumentation due to the flexibility,
since LLVM provides lots of APIs and tools to manipulate
the IR. The instrumentation pass is placed at the end of the
LLVM optimization passes, where only memory accesses sur-
viving all previous optimization passes will be instrumented.
NumaPerf-Static traverses functions one by one, and instru-
ments memory accesses on global and heap variables. The
instrumentation is adapted from AddressSanitizer [31].

3.2 NumaPerf-Dynamic
This subsection starts with tracking application information,
such as memory accesses, synchronizations, and memory
allocations. Then it discusses the detection of each particular
performance issue. In the following, NumaPerf is used to
represent NumaPerf-Dynamic unless noted otherwise.

NumaPerf: Predictive NUMA Profiling ICS ’21, June 14–17, 2021, Virtual Event, USA

3.2.1 Tracking Accesses, Synchronizations, and Mem-
ory Allocations. NumaPerf-Dynamic implements the in-
serted functions before memory accesses, allowing it to track
memory accesses. Once a memory access is intercepted,
NumaPerf performs the detection as discussed below.
NumaPerf utilizes a preloading mechanism to intercept

synchronizations and memory allocations before invoking cor-
respond functions. NumaPerf intercepts synchronizations in
order to detect possible thread migrations, which will be ex-
plained later. NumaPerf also intercepts memory allocations,
so that we could attribute performance issues to different call-
sites, assisting data-centric analysis [24]. For each memory
allocation, NumaPerf records the allocation callsite and its
address range. NumaPerf also intercepts thread creations
in order to set up per-thread data structure. In particular, it
assigns each thread a thread index.

3.2.2 Detecting Normal Remote Accesses. NumaPerf de-
tects a remote access when an access’s thread is different
from the corresponding page’s initial accessor, as discussed
in Section 2. This is based on the assumption that the OS
typically allocates a physical page from the node of the first
accessor due to the default first-touch policy [19]. Similar to
existing work, NumaPerf may over-estimate the number of
remote accesses, since an access is not a remote one if the
corresponding cache is not evicted. However, this shortcom-
ing can be overcome easily by only reporting issues larger
than a specified threshold, as exemplified in our evaluation
(Section 4).
NumaPerf is carefully designed to reduce its performance

and memory overhead. NumaPerf tracks a page’s initial ac-
cessor to determine a remote access. A naive design is to em-
ploy hash table for tracking such information.Due to a large
number of memory accesses, a naive design (e.g. hash table)
could easily introduce significant performance overhead. In-
stead, NumaPerf maps a continuous range of memory with
the shadow memory technique [34], which only requires a
simple computation to locate the data. NumaPerf also main-
tains the number of accesses for each page in the same map.
We observed that a page without a large number of memory
accesses will not cause significant performance issues. Based
on this, NumaPerf only tracks the detailed accesses for a
page, when its number of accesses is larger than a pre-defined
(configurable) threshold. Since the recording uses the same
data structures, NumaPerf uses an internal pool to maintain
such data structures with the exact size, without resorting to
the default allocator.

For pages with excessive accesses, NumaPerf tracks the
following information. First, it tracks the threads accessing
these pages, which helps to determine whether to use block-
wise allocations for fixes. Second, NumaPerf further divides
each page into multiple blocks (e.g., 64 blocks), and tracks
the number of accesses on each block. This enables us to
compute the number of remote accesses of each object more

accurately. Third, NumaPerf further checks whether an ob-
ject is exclusively read after the first write or not, which could
be determined whether duplication is possible or not. Last not
least, NumaPerfmaintains word-level information for cache
lines with excessive cache invalidations, as further described
in Section 3.2.3.

Remote (Access) Score: NumaPerf proposes a perfor-
mance metric – remote score – to evaluate the seriousness of
remote accesses. An object’s remote score is defined as the
number of remote accesses within a specific interval, which is
currently set as one millisecond. Typically, a higher score in-
dicates a more serious performance issue, as shown in Table 1.
For pages with both remote accesses and cache invalidations,
we will check whether cache invalidation is dominant or not.
If the number of cache invalidations is larger than 50% of
remote accesses, then the major performance issue of this
page is caused by cache invalidations. We will omit remote
accesses instead.

3.2.3 Detecting False and True Sharing Issues. Based on
our observation, cache coherence has a higher performance
impact than normal remote accesses. Further, false sharing re-
quires a different fixing strategy, and is typically addressed by
padding. NumaPerf detects false and true sharing separately,
which is different from all NUMA profilers.
NumaPerf detects false/true sharing with a similar mech-

anism as Predator [23], but adapting it for the NUMA archi-
tecture. Predator tracks cache invalidations as follows: if a
thread writes a cache line that has been loaded by multiple
threads, this write operation introduces a cache invalidation.
But this mechanism under-estimates the number of cache
invalidations. Whenever multiple cores hold the same cache
line, this write operation may introduce multiple cache inval-
idations and therefore multiple remote accesses. Therefore,
NumaPerf tracks the number of threads loaded the same
cache line, and increases cache invalidation by the number of
threads that has loaded this cache line. Further, NumaPerf
differentiates remote cache invalidations from local ones since
they may have different performance impacts: if a thread
should load the memory from a remote node, then it is a
remote cache invalidation. Otherwise, it is a local cache inval-
idation. NumaPerf only focuses on remote cache invalida-
tions that have a higher impact on the NUMA machine.

False/True Sharing Score: NumaPerf further proposes
false/true sharing scores for each corresponding object, which
is lacked in Predator [23]. The scores are computed by di-
viding the number of cache invalidations with the product of
time (milliseconds) and the number of threads. The number of
threads is employed to reduce the impact of parallelization de-
gree, with the architecture-independent method. NumaPerf
differentiates false sharing from true sharing by recording
word-level accesses. Note that NumaPerf only records word-
level accesses for cache lines with the number of writes larger
than a pre-defined threshold, due to the performance concern.

ICS ’21, June 14–17, 2021, Virtual Event, USA Xin Zhao, Jin Zhou, Hui Guan, Wei Wang, Xu Liu, and Tongping Liu

3.2.4 Detecting Issues Caused by Thread Migration. As
discussed in Section 1, NumaPerf identifies applications
with excessive thread migrations, which are omitted by all
existing NUMA profilers. Thread migration may introduce
excessive remote accesses. After the migration, a thread is
forced to reload all data from the original node, and access its
stack remotely afterwards. Further, all deallocations from this
thread may be returned to freelists of remote nodes, causing
more remote accesses afterwards.

Thread Migration Score: NumaPerf evaluates the seri-
ousness of thread migrations with thread migration scores.
This score is computes as the following formula:

𝑆 = 𝑝
∑
𝑡 ∈𝑇

𝑚𝑡/(𝑟𝑡 · |𝑇 |)

[[why would the total number of threads looks like the
absolute value of the number of threads? : where 𝑆 is the
thread migration score, 𝑝 is the parallel phase percent-
age of the program, 𝑇 is threads in the program, |𝑇 | is
the number of total threads, 𝑚𝑡 is the possible migration
times for thread 𝑡 , and 𝑟𝑡 is total running seconds of the
program.]]
NumaPerf utilizes the total number of lock contentions,

condition waits, and barrier waits as the possible migration
times, instead of identifying the real migration times. There-
fore, NumaPerf predicts the potential performance impact
caused by thread migration. NumaPerf utilizes the preload-
ing mechanism to intercept these synchronizations, and de-
tects potential lock contention by checking the status of lock.
The parallel phase percentage indicates the necessarity of per-
forming the optimization. For instance, if the parallel phase
percentage is only 1%, then we could at most improve the
performance by 1%. In order to reduce the effect of par-
allelization, the score is further divided by the number of
threads. Based on our evaluation, this parameter makes two
platforms with different number of threads have very similar
results.

When an application has a large number of thread migra-
tions, NumaPerf suggests users to utilize thread binding
to reduce remote accesses. As shown in Table 1, thread mi-
gration may degrade the performance of an application (i.e.,
fluidanimate) by up to 418%. This shows the importance
to eliminate thread migration for such applications. However,
some applications in PARSEC (as not shown in Table 1) have
very marginal performance improvement with thread binding.

3.2.5 Detecting Load Imbalance. Load imbalance is an-
other factor that could significantly affect the performance on
the NUMA architecture, which could cause node imbalance
and interconnect congestion. NumaPerf detects load imbal-
ance among different types of threads, which is omitted by
existing NUMA-profilers.

The detection is based on an assumption: every type of
threads should have a similar number of memory accesses in

a balanced environment. NumaPerf proposes to utilize the
number of memory accesses to predict the workload of each
types of threads. In particular, NumaPerf monitors memory
accesses on heap objects and globals, and then utilizes the
sum of such memory accesses to check the imbalance.
NumaPerf further predicts an optimal thread assignment

with the number of memory accesses. A balance assignment
is to balance memory accesses from each type of threads.
For instance, if the number of memory accesses on two type
of threads has a one-to-two portion, then NumaPerf will
suggest to assign threads in one-to-two portion. Section 4.2
further evaluates NumaPerf’s suggested assignment, where
NumaPerf significantly outperforms another work [1].

4 Experimental Evaluation
This section aims to answer the following research questions:

• Effectiveness: Whether NumaPerf could detect more
performance issues than existing NUMA-profilers? (Sec-
tion 4.1) How helpful of NumaPerf’s detection re-
port? (Section 4.2)

• Performance: How much performance overhead is im-
posed by NumaPerf’s detection, comparing to the
state-of-the-art tool? (Section 4.3)

• Memory Overhead: What is the memory overhead of
NumaPerf? (Section 4.4)

• Architecture In-dependence: Whether NumaPerf
could detect similar issues when running on a non-
NUMA architecture? (Section 4.5)

Experimental Platform: NumaPerf was evaluated on a
Intel(R) Xeon(R) 8153 machine with 8 nodes and 128 phys-
ical cores in total, except in Section 4.5. This machine is
installed with 512GB memory. Any two nodes in this ma-
chine are less than or equal to 3 hops, where the latency of
two hops and three hops is 2.1 and 3.1 respectively, while the
local latency is 1.0. The OS for this machine is Linux Debian
10 and the compiler is Clang-LLVM 10.0.0. The hyperthread-
ing was turned off for the evaluation.

4.1 Effectiveness
We evaluated NumaPerf on multiple HPC applications (e.g.,
AMG2006 [17], lulesh [15], and UMT2013 [16]) and a widely-
used multithreaded application benchmark suite — PAR-
SEC [4]. Applications with NUMA performance issues are
listed in Table 1. The performance improvement after fixing
all issues is listed in “Improve” column, with the average of
10 runs. Here, we divide the original runtime by the runtime
after optimization to get the improvement rate. For each is-
sue, the table listed the type of issue and the corresponding
score, the allocation site, and the fix strategy. Note that the
table only shows cases with page sharing score larger than
1500 (if without cache false/true sharing), false/true sharing
score larger than 1, and thread migration score larger than
150. Further, the performance improvement of each specific

NumaPerf: Predictive NUMA Profiling ICS ’21, June 14–17, 2021, Virtual Event, USA

Application Improve Specific Issues
Issue Score Allocation Site Fix Strategy Improve New

AMG2006 160% 1 remote access 7390 par_rap.c:1385 block interleave 160%
2 thread migration 6 thread binding 132% X

lulesh 594%

3 remote access 1840 lulesh.cc:543-545 block interleave 429%
4 remote access 1504 lulesh.cc:1029-1034 block interleave 504%
5 remote access 4496 lulesh.cc:2251-2264 block interleave 406% 418%6 false sharing 26 padding 103% X
7 remote access 1229 lulesh.cc:2089 block interleave 392% 407%8 false sharing 12 padding 104% X
9 thread migration 3328 thread binding 382% X

UMT2013 131% 10 thread migration 18 thread binding 131% X
11 remote access N/A ZoneData_mod.F90:95 N/A N/A N/A

bodytrack 109%
12 remote access 10800 FlexImageStore.h:146 page interleave 106%13 false sharing 24 X
14 thread migration 297 thread binding 105% X

dedup 116% 15 thread imbalance adjust threads 116% X
facesim 105% 16 thread migration 607 thread binding 105% X
ferret 206% 17 thread imbalance adjust threads 206% X

fluidanimate 429%

18 remote access 90534 pthreads.cpp:292 page interleave 340%19 true sharing 2941 X
20 remote access 180 pthreads.cpp:294 page interleave 112% 160%21 false sharing 20 padding 158% X
22 thread migration 73 thread binding 418% X

streamcluster 167%

23 remote access 427 streamcluster.cpp:984 page interleave 100% 103%24 false sharing 31 padding 102% X
25 remote access 7169 streamcluster.cpp:1845 duplicate 158%
26 thread migration 229 thread binding 132% X

Table 1. Detected NUMA performance issues when running on an 8-node NUMA machine. NumaPerf detects 15 more
performance bugs that cannot be detected by existing NUMA profilers (with a check mark in the last column). Note that
NumaPerf missed one issue (item 11) that can be detected by existing tools.

issue is listed as well. We also present multiple cases studies
that show how helpful is NumaPerf’s report in Section 4.2.

Overall, we have the following observations. First, it re-
ports no false positives by only reporting scores larger than
a threshold. Second, NumaPerf detects more performance
issues than the combination of all existing NUMA profil-
ers [10, 14, 18, 24, 26, 30, 32, 35]. The performance issues
that cannot be detected by existing NUMA profilers are high-
lighted with a check mark in the last column of the table, al-
though some can be detected by specific tools, such as cache
false/true sharing issues [8, 13, 21–23]. This comparison with
existing NUMA profilers is based on the methodology. Exist-
ing NUMA profilers cannot separate false or true sharing with
normal remote accesses, and cannot detect thread migration
and load imbalance issues.

When comparing to a specific profiler, NumaPerf also has
better results even on detecting remote accesses. For lulesh,
HPCToolkit detects issues of # 4 [24], while NumaPerf
detects three more issues (# 3, 5, 7). Fixing these issues im-
proves the performance by up to 504% (with the threads

binding). Multiple reasons may contribute to this big differ-
ence. First, NumaPerf’s predictive method detects some
issues that are not occurred in the current scheduling and the
current hardware, while HPCToolkit has no such capabili-
ties. Second, HPCToolkit requires to bind threads to nodes,
which may miss remote accesses caused by its specific bind-
ing. Third, NumaPerf’s fine-grained profiling provides a
better effectiveness than a coarse-grained profiler like HPC-
Toolkit. NumaPerf may have false negatives caused by its
instrumentation. NumaPerf cannot detect an issue (# 11 in
Table 1) of UMT2013 reported by HPCToolkit [24]. The ba-
sic reason is that NumaPerf cannot instrument Fortran code.
NumaPerf’s limitations are further discussed in Section 4.2.

4.2 Case Studies
In this section, multiple case studies are shown how program-
mers could fix performance issues based on the report.

ICS ’21, June 14–17, 2021, Virtual Event, USA Xin Zhao, Jin Zhou, Hui Guan, Wei Wang, Xu Liu, and Tongping Liu

4.2.1 Remote Accesses. For remote accesses, NumaPerf
not only reports remote access scores, indicating the serious-
ness of the corresponding issue, but also provides additional
information to reduce remote accesses. Remote accesses can
be reduced with different strategies, such as padding (false
sharing), block-wise interleaving, duplication, and page inter-
leaving.

Allocation Site: lulesh.cc:2251
Remote score: 4496
False sharing score: 26
True Sharing score: 0.00
Pages accessed by threads:

0--8, 8--16, 16--23, 23--31

Listing 1. Remote access issue of lulesh

NumaPerf provides a data-centric analysis, as existing
work [24]. That is, it always attributes performance issues to
its allocation callsite. NumaPerf also shows the seriousness
with its remote access score.
NumaPerf further reports more specific information to

guide the fix. As shown in Listing 1, NumaPerf further
reports each page that is accessed by which threads. Based on
this information, block-wise interleave is a better strategy for
the fix, which achieves a better performance result. However,
for Issue # 18 or # 20 of fluidanimate, there is no such
access pattern. Therefore, these issues can be fixed with the
normal page interleave method.

Allocation site:streamcluster.cpp:1845
Remote score: 7169
False sharing score: 0.00
True Sharing score: 0.00
Continuous reads after the last write: 2443582804

Listing 2. Remote access issue of streamcluster

Listing 2 shows another example of remote accesses. For
this issue (# 25), a huge number of continuous reads (2330M)
were detected after the last write. Based on such a report, the
object can be duplicated to different physical nodes, which
improves the performance by 158%, which achieves signifi-
cantly better performance than page interleave.

For cache coherency issues, NumaPerf differentiates them
from normal remote accesses, and further differentiates false
sharing from true sharing. Given the report, programmers
could utilize the padding to eliminate false sharing issues.
As shown in Table 4, many issues have false sharing issues
(e.g., #6, #8, #13, #21, #24). Fixing them with the padding
could easily boost the performance. However, we may simply
utilize the page interleave to solve true sharing issues.

4.2.2 Thread Migration. When an application has frequent
thread migrations, it may introduce excessive thread migra-
tions. For such issues, the fix strategy is to bind threads to
nodes. Typically, there are two strategies: round robin and
packed binding. Round robin is to bind continuous threads to
different nodes one by one, ensuring that different nodes have

a similar number of threads. Packed binding is to bind multi-
ple threads to the first node, typically the same as the number
of hardware cores in one node, and then to another node af-
terwards. Based on our observation, round robin typically
achieves a better performance than packed binding, which
is the default binding policy for our evaluations in Table 1.
Thread binding itself achieves the performance improvement
by up to 418% (e.g., fluidanimate), which indicates the
importance for some applications.

4.2.3 Load Imbalance. For load imbalance, NumaPerf
not only reports the existence of such issues, but also suggests
a thread assignment that could help reduce these issues. As
discussed in Section 3.2.5, NumaPerf predicts the assign-
ment based on the number of sampled memory accesses: the
number of threads for each type should have a similar pro-
portion as the number of memory accesses from each type
of threads. That is, if two type of threads has a one-to-two
proportion on memory accesses, then the number of threads
should also follow this one-to-two proportion.

For dedup, NumaPerf reports that memory accesses of
anchor, chunk, and compress threads have a proportion of
92.2:0.33:3.43, when all libraries are instrumented. Based on
this, the portion of the chunk and compress threads should be
around 1 to 10. Since dedup implements a pipe-line model
that multiple stages are using the shared queues to commu-
nicate, many threads competing for the same queue may ac-
tually introduce high contention. Thus, we actually set the
number of chunk threads to be 2, which helps to reduce the
possible lock contention. Based on this, we further set the
number of compress threads to be 18, and the number of
anchor to be 76. The corresponding queues are [[18:2:2:4
(76:18:2??)]]. With this setting, dedup’s performance is im-
proved by 16%. We further compare its performance with the
suggested assignment of another existing work–SyncPerf [1].
SyncPerf assumes that different types of threads should have
the same waiting time. SyncPerf proposes the best assignment
should be 24:24:48, which could only improve the perfor-
mance by 5%.

For another example—ferret, NumaPerf suggests a
proportion of 3.3 : 1.9 : 47.4 : 75.3 for its four types of threads.
With this suggestion, we are configuring the threads to be
4 : 2 : 47 : 75. With this assignment, ferret’s performance
increases by 106% compared with the original version. In
contrast, SyncPerf suggests an assignment of 1 : 1 : 2 : 124
. However, following such an assignment actually degrades
the performance by 354% instead.

Overall, NumaPerf suggested optimal assignment for
load imbalance issues achieves the better performance than
SyncPerf [1].

4.3 Performance Overhead
We also evaluated the performance of NumaPerf on PAR-
SEC applications, and the performance results are shown

NumaPerf: Predictive NUMA Profiling ICS ’21, June 14–17, 2021, Virtual Event, USA

Figure 3. Performance overhead of NumaPerf and others.

in Figure 3. On average, NumaPerf’s overhead is around
585%, which is orders-of-magnitude smaller than the state-
of-the-art fine-grained profiler — NUMAPROF [30]. In con-
trast, NUMAPROF’s overhead runs 316× slower than the
original one. NumaPerf is designed carefully to avoid such
high overhead, as discussed in Section 3. Also, NumaPerf’s
compiler-instrumentation also helps reduce some overhead
by excluding memory accesses on stack variables.

There are some exceptions. Two applications impose more
than 10× overhead, including Swaption and x264. Based on
our investigation, the instrumentation with an empty function
imposes more than 5× overhead. The reason is that they have
significantly more memory accesses compared with other
applications like blackscholes. Based on our investigation,
swaption has more than 250× memory accesses than blacksc-
holes in a time unit. Applications with low overhead can be
caused by not instrumenting libraries, which is typically not
the source of NUMA performance issues.

4.4 Memory Overhead

Apps Memory Usage (MB)
Default NumaPerf NUMAPROF

blackscholes 617 689 685
bodytrack 36 139 260
canneal 887 1476 2383
dedup 917 1806 2388
facesim 2638 2826 3005
ferret 160 301 445
fluidanimate 470 667 753
raytrace 1287 1610 2089
streamcluster 112 216 928
swaptions 28 67 255
vips 226 283 463
x264 2861 3039 3108
Total 10238 13120 16762
Table 2. Memory consumption of different profilers.

We further evaluated NumaPerf’s memory overhead with
PARSEC applications. The results are shown in Table 2. In to-
tal, NumaPerf’s memory overhead is around 28%, which is

much smaller than the state-of-the-art fine-grained profiler —
NUMAPROF [30]. NumaPerf’s memory overhead is mainly
coming from the following resources. First, NumaPerf records
the detailed information in page-level and cache-level, so that
we could provide detailed information about these issues.
Second, NumaPerf also stores allocation callsites for every
object in order to attribute performance issues back to the
data.

We notice that some applications have a larger percentage
of memory overhead, such as streamcluster. For it, a
large object has very serious NUMA issues. Therefore, record-
ing page and cache level detailed information contributes to
the major memory overhead. However, overall, NumaPerf’s
memory overhead is totally acceptable, since it provides much
more helpful information.

4.5 Architecture Sensitiveness
We further confirm whether NumaPerf is able to detect sim-
ilar performance issues when running on a non-NUMA or
UMA machine. We further performed the experiments on
a two-processor machine, where each processor is Intel(R)
Xeon(R) Gold 6230 and each processor has 20 cores. We
explicitly disabled all cores in node 1 but only utilizing 16
hardware cores in node 0. This machine has 256GB of main
memory, 64KB L1 cache, and 1MB of L2 cache. The exper-
imental results are further listed in Table 3. For simplicity,
we only listed the applications, the issue number, and serious
scores in two different machines.

Table 3 shows that most reported scores in two machines
are very similar, although with small variance. The small
variance could be caused by multiple factors, such as paral-
lelization degree (concurrency). However, this table shows
that all serious issues can be detected on both machines. This
indicates that NumaPerf achieves its design goal, which
could even detect NUMA issues without running on a NUMA
machine.

5 Limitation
NumaPerf bases on compiler-based instrumentation to cap-
ture memory accesses. Therefore, it shares the same short-
comings and strengths of all compiler-based instrumentation.
On the one side, NumaPerf can perform static analysis to
reduce unnecessary memory accesses, such as accesses of
stack variables. NumaPerf typically achieves much better
performance than binary-based instrumentation tools, such
as NUMAPROF [30]. On the other side, NumaPerf re-
quires the re-compilation (and the availability of the source
code), and will miss memory accesses without the instru-
mentation. That is, it can not detect NUMA issues caused by
non-instrumented components (e.g., libraries), suffering from
false negatives. However, most issues should only occur in
applications, but not libraries.

ICS ’21, June 14–17, 2021, Virtual Event, USA Xin Zhao, Jin Zhou, Hui Guan, Wei Wang, Xu Liu, and Tongping Liu

Application Specific Issues

Type
Score

(NUMA)
Score

(UMA)

AMG2006 1 remote access 7390 5405
2 thread migration 6 6

lulesh

3 remote access 1840 2443
4 remote access 1504 2353
5 remote access 4496 4326
6 false sharing 26 51
7 remote access 1229 2136
8 false sharing 12 27
9 thread migration 3328 5213

UMT2013 10 thread migration 18

bodytrack
11 remote access 10800 8203
12 false sharing 24 153
13 thread migration 297 190

dedup 14 thread imbalance 92:1:3 88:4:4
facesim 15 thread migration 607 274
ferret* 16 thread imbalance

fluidanimate

17 remote access 90534 15765
18 true sharing 2941 1753
19 remote access 180 95
20 false sharing 20 80
21 thread migration 73 34

streamcluster

22 remote access 427 270
23 false sharing 31 153
24 remote access 7169 10259
25 thread migration 229 214

Table 3. Evaluation on architecture Sensitiveness. We evalu-
ated NumaPerf on a non-NUMA (UMA) machine, which
has very similar results as that on a NUMA machine. For
ferret, NumaPerf reports a proportion of 3 : 2 : 48 : 75
on the 8-node NUMA machine, and 5 : 4 : 50 : 77 on the
UMA machine.

6 Related Work
This section discusses NUMA-profiling tools at first, and then
discusses other relevant tools and systems.

6.1 NUMA Profiling Tools
Simulation-Based Approaches: Bolosky et al. propose to

model NUMA performance issues based on the collected
trace, and then derive a better NUMA placement policy [6].
NUMAgrind employs binary instrumentation to collect mem-
ory traces, and simulates cache activities and page affin-
ity [33]. MACPO reduces the overhead of collecting memory
traces and analysis by focusing on code segments that have
known performance bottlenecks [29]. That is, it typically re-
quires programmer inputs to reduce its overhead. Simulation-
based approaches could be utilized for any architecture, which
are very useful. However, they are typically extremely slow,
with thousands of performance slowdown, which makes them
un-affordable even for development phases. Further, they still

require to evaluate the performance impact for a given archi-
tecture, which will significantly limit its usage. NumaPerf
utilizes a measurement based approach, which avoids signifi-
cant performance overhead of simulation-based approaches.

Fine-Grained Approaches: TABARNAC focuses on the
visualization of memory access behaviors of different data
structures [2]. It uses PIN to collect memory accesses of
every thread on the page level, and then relates with data
structure information together to visualize the usage of data
structures. It introduces the runtime overhead between 10×
and 60×, in addition to its offline overhead. Diener et al. pro-
pose to instrument memory accesses with PIN dynamically,
and then characterize distribution of accesses of different
NUMA nodes [10]. The paper does not present the detailed
overhead. Numaprof also uses the binary instrumentation
(i.e., PIN) to collect and identify local and remote memory
accesses [30]. Numaprof relies on a specific thread binding to
detect remote accesses, which shares the same shortcoming
as other existing work [24, 35]. Numaprof also shares the
same issues with other tools, which only focuses on remote
accesses while omitting other issues such as cache coherence
issues and imbalance issues. In addition, Numaprof is only
a code-based profiler that could only report program state-
ments with excessive remote memory access, which requires
programmers to figure out the data (object) and a specific
strategy. Due to this shortcoming, it makes the comparison
with Numaprof extremely difficult and time-consuming. In
contrast, although NumaPerf also utilizes fine-grained mea-
surement, it detects more issues that may cause performance
issues in any NUMA architecture, and provides more useful
information for bug fixes.

Coarse-Grained Approaches: Many tools employ hard-
ware Performance Monitoring Units (PMU) to identify NUMA-
related performance issues, such as VTune [14], Memphis [26],
MemProf [18], Xu et al. [24], NumaMMA [32], and LaProf [35],
where their difference are further described in the following.
Both VTune [14] and Memphis [26] only detects NUMA-
performance issues on statically-linked variables. MemProf
proposes the employment of hardware Performance Moni-
toring Units (PMU) to identify NUMA-related performance
issues [18], with the focus on remote accesses. It constructs
data flow between threads and objects to help understand
NUMA performance issues. One drawback of MemProf is
that it requires an additional kernel module that may prevent
people of using it. Similarly, Xu et al. also employ PMU to de-
tect NUMA performance issues [24], but without the change
of the kernel. It further proposes a new metric, the NUMA
latency per instruction, to evaluate the seriousness of NUMA
issues. This tool has a drawback that it statically binds every
thread to each node, which may miss some NUMA issues
due to its static binding. NumaMMA also collects traces with
PMU hardware, but focuses on the visualization of memory
accesses [32]. LaProf focuses on multiple issues that may

NumaPerf: Predictive NUMA Profiling ICS ’21, June 14–17, 2021, Virtual Event, USA

cause performances issues in NUMA architecture [35], in-
cluding data sharing, shared resource contention, and remote
imbalance. LaProf has the same shortcoming by binding every
thread statically. Overall, these sampling-based approaches
although imposes much lower overhead, making them ap-
plicable even for the production environment, they cannot
detect all NUMA performance issues especially when most of
them only focus on remote accesses. In contrast, NumaPerf
aims to detect performance issues inside development phases,
avoiding any additional runtime overhead. Also, NumaPerf
focuses more aspects with a predictive approach, not just
limited to remote accesses in the current hardware. Our eval-
uation results confirm NumaPerf’s comprehensiveness and
effectiveness.

6.2 Other Related Tools
RTHMS also employs PIN to collect memory traces, and
then assigns a score to each object-to-memory based on its
algorithms [28]. It aims for identifying the peformance issues
for the hybrid DRAM-HBM architecture, but not the NUMA
architecture, and has a higher overhead than NumaPerf.
Some tools focus on the detection of false/true sharing is-
sues [8, 13, 21–23], but skipping other NUMA issues.

SyncPerf also detects load imablance and predicts the op-
timal thread assignment [1]. SyncPerf aims to achieve the
optimal thread assignment by balancing the waiting time of
each types of threads. In contrast, NumaPerf suggests the
optimal thread assignment based the number of accesses of
each thread, which indicates the actual workload.

7 Conclusion
Parallel applications running on NUMA machines are prone
to different types of performance issues. Existing NUMA
profilers may miss significant portion of optimization oppor-
tunities. Further, they are bound to a specific NUMA topology.
Different from them, NumaPerf proposes an architecture-
independent and scheduling-independent method that could
detect NUMA issues even without running on a NUMA ma-
chine. Comparing to existing NUMA profilers, NumaPerf
detects more performance issues without false alarms, and
also provides more helpful information to assist bug fixes.
In summary, NumaPerf will be an indispensable tool that
could identify NUMA issues in development phases.

References
[1] Mohammad Mejbah ul Alam, Tongping Liu, Guangming Zeng, and

Abdullah Muzahid. Syncperf: Categorizing, detecting, and diagnosing
synchronization performance bugs. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys ’17, pages 298–
313, New York, NY, USA, 2017. ACM.

[2] David Beniamine, Matthias Diener, Guillaume Huard, and Philippe
O. A. Navaux. Tabarnac: Visualizing and resolving memory access
issues on numa architectures. In Proceedings of the 2nd Workshop on
Visual Performance Analysis, VPA ’15, New York, NY, USA, 2015.
Association for Computing Machinery.

[3] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.
Wilson. Hoard: a scalable memory allocator for multithreaded applica-
tions. In ASPLOS-IX: Proceedings of the ninth international conference
on Architectural support for programming languages and operating
systems, pages 117–128, New York, NY, USA, 2000. ACM Press.

[4] Christian Bienia and Kai Li. PARSEC 2.0: A new benchmark suite for
chip-multiprocessors. In Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[5] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexan-
dra Fedorova. A case for numa-aware contention management on
multicore systems. In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’11, pages 1–1,
Berkeley, CA, USA, 2011. USENIX Association.

[6] William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald, Robert J.
Fowler, and Alan L. Cox. Numa policies and their relation to memory
architecture. In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IV, pages 212–221, New York, NY, USA, 1991.
ACM.

[7] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An in-
frastructure for adaptive dynamic optimization. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’03, page 265–275,
USA, 2003. IEEE Computer Society.

[8] Milind Chabbi, Shasha Wen, and Xu Liu. Featherlight on-the-fly false-
sharing detection. In Andreas Krall and Thomas R. Gross, editors,
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria,
February 24-28, 2018, pages 152–167. ACM, 2018.

[9] Charlie Curtsinger and Emery D. Berger. Coz: Finding code that
counts with causal profiling. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages 184–197, New York,
NY, USA, 2015. ACM.

[10] Matthias Diener, Eduardo HM Cruz, Laércio L Pilla, Fabrice Dupros,
and Philippe OA Navaux. Characterizing communication and page
usage of parallel applications for thread and data mapping. Performance
Evaluation, 88:18–36, 2015.

[11] Stephane Eranian, Eric Gouriou, Tipp Moseley, and Willem de Bruijn.
Linux kernel profiling with perf. https://perf.wiki.kernel.org/index.
php/Tutorial, 2015.

[12] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof:
a call graph execution profiler. In SIGPLAN Symposium on Compiler
Construction, pages 120–126, 1982.

[13] Christian Helm and Kenjiro Taura. Perfmemplus: A tool for automatic
discovery of memory performance problems. In International Con-
ference on High Performance Computing, pages 209–226. Springer,
2019.

[14] Intel Corporation. Intel VTune performance analyzer. http://www.intel.
com/software/products/vtune.

[15] Lawrence Livermore National Laboratory. Livermore unstructured
lagrangian explicit shock hydrodynamics (lulesh). https://codesign.
llnl.gov/lulesh.php., Dec 2010.

[16] Lawrence Livermore National Laboratory. Llnl coral benchmarks.
https://asc.llnl.gov/CORAL-benchmarks., Dec 2013.

[17] Lawrence Livermore National Laboratory. Llnl sequoia benchmarks.
https://asc.llnl.gov/sequoia/benchmarks., Dec 2013.

[18] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. Memprof: A
memory profiler for numa multicore systems. In Proceedings of the
2012 USENIX Conference on Annual Technical Conference, USENIX
ATC’12, pages 5–5, Berkeley, CA, USA, 2012. USENIX Association.

[19] Christoph Lameter. An overview of non-uniform memory access. Com-
mun. ACM, 56(9):59–54, September 2013.

[20] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings of

https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.intel.com/software/products/vtune
http://www.intel.com/software/products/vtune
https://codesign.llnl.gov/lulesh.php.
https://codesign.llnl.gov/lulesh.php.
https://asc.llnl.gov/ CORAL- benchmarks.
https://asc.llnl.gov/sequoia/ benchmarks.

ICS ’21, June 14–17, 2021, Virtual Event, USA Xin Zhao, Jin Zhou, Hui Guan, Wei Wang, Xu Liu, and Tongping Liu

the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[21] Tongping Liu and Emery D. Berger. Sheriff: precise detection and
automatic mitigation of false sharing. In Proceedings of the 2011 ACM
international conference on Object oriented programming systems
languages and applications, OOPSLA ’11, pages 3–18, New York, NY,
USA, 2011. ACM.

[22] Tongping Liu and Xu Liu. Cheetah: Detecting false sharing efficiently
and effectively. In Proceedings of the 2016 International Symposium
on Code Generation and Optimization, CGO 2016, pages 1–11, New
York, NY, USA, 2016. ACM.

[23] Tongping Liu, Chen Tian, Hu Ziang, and Emery D. Berger. Predator:
Predictive false sharing detection. In Proceedings of 19th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP’14, New York, NY, USA, 2014. ACM.

[24] Xu Liu and John Mellor-Crummey. A tool to analyze the performance
of multithreaded programs on numa architectures. In Proceedings of the
19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 259–272, New York, NY, USA, 2014.
ACM.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI
’05, pages 190–200, New York, NY, USA, 2005. ACM.

[26] C. McCurdy and J. Vetter. Memphis: Finding and fixing numa-related
performance problems on multi-core platforms. In 2010 IEEE Inter-
national Symposium on Performance Analysis of Systems Software
(ISPASS), pages 87–96, March 2010.

[27] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’07, page 89–100, New York, NY, USA,
2007. Association for Computing Machinery.

[28] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin
Laure, and Stefano Markidis. Rthms: A tool for data placement on
hybrid memory system. In Proceedings of the 2017 ACM SIGPLAN
International Symposium on Memory Management, ISMM 2017, page
82–91, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[29] Ashay Rane and James Browne. Enhancing performance optimization
of multicore chips and multichip nodes with data structure metrics. In
Proceedings of the 21st International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’12, pages 147–156, New
York, NY, USA, 2012. ACM.

[30] Othman Bouizi Sebastien Valat. Numaprof, a numa memory profiler. In
Mencagli G. et al. (eds) Euro-Par 2018: Parallel Processing Workshops.
Euro-Par 2018. Lecture Notes in Computer Science, vol 11339. Springer,
Cham, pages 159–170, December 2018.

[31] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: A fast address sanity checker. In
Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, pages 28–28, Berkeley, CA, USA, 2012.
USENIX Association.

[32] François Trahay, Manuel Selva, Lionel Morel, and Kevin Marquet.
Numamma: Numa memory analyzer. In Proceedings of the 47th In-
ternational Conference on Parallel Processing, ICPP 2018, New York,
NY, USA, 2018. Association for Computing Machinery.

[33] R. Yang, J. Antony, A. Rendell, D. Robson, and P. Strazdins. Profiling
directed numa optimization on linux systems: A case study of the
gaussian computational chemistry code. In 2011 IEEE International
Parallel Distributed Processing Symposium, pages 1046–1057, May

2011.
[34] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong,

and Saman Amarasinghe. Dynamic cache contention detection in multi-
threaded applications. In The International Conference on Virtual
Execution Environments, Newport Beach, CA, Mar 2011.

[35] L. Zhu, H. Jin, and X. Liao. A tool to detect performance problems
of multi-threaded programs on numa systems. In 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 1145–1152, 2016.

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 NUMA Architecture
	2.2 Basic Idea

	3 Design and Implementation
	3.1 NumaPerf-Static
	3.2 NumaPerf-Dynamic

	4 Experimental Evaluation
	4.1 Effectiveness
	4.2 Case Studies
	4.3 Performance Overhead
	4.4 Memory Overhead
	4.5 Architecture Sensitiveness

	5 Limitation
	6 Related Work
	6.1 NUMA Profiling Tools
	6.2 Other Related Tools

	7 Conclusion
	References

