
FreeLunch: Compression-based GPU Memory
Management for Convolutional Neural Networks

Shaurya Patel
University of Massachusetts, Amherst

University of British Columbia
spatel27@student.ubc.ca

Tongping Liu
University of Massachusetts, Amherst

tongpingliu@umass.edu

Hui Guan
University of Massachusetts, Amherst

huiguan@umass.edu

Abstract—Recently, there is a trend to develop deeper and
wider Convolutional Neural Networks (CNNs) to improve task
accuracy. Due to this reason, the GPU memory quickly becomes
the performance bottleneck since its capacity cannot keep up with
the increase of the memory requirement of CNN models. Existing
solutions exploit techniques such as swapping and recomputation
to accommodate the shortage of memory. However, they suffer
from performance degradations due to either the limited CPU-
GPU bandwidth or the significant recomputation cost. This paper
proposes a compression-based technique called FreeLunch that
actively compresses the intermediate data to reduce the memory
footprint of training large CNN models. Based on our evaluation,
FreeLunch has up to 35% less memory consumption and up to
70% better throughput than swapping and recomputation.

Index Terms—Systems for ML, GPU Memory Management,
Memory Compression

I. INTRODUCTION

Recent years have seen increasing adoption of Convolu-
tional Neural Networks (CNN) in AI applications due to their
superior accuracy on many computer vision tasks. Developing
deeper and wider CNNs is an effective approach to improving
task accuracy. However, the development is hindered by the
memory constraints of GPUs. Deeper and wider CNN models
will consume more memory during the training. For example,
ResNet152 [1] consumes around 18GB of memory for a batch
size of only 32 while the mainstream type of GPUs in cloud
platforms P100 has only 16GB memory. As GPU memory
sizes grow at a slower rate than memory requirements of large
CNNs, there is a strong need to design memory management
techniques to support the training of large CNN models on a
single GPU.

Several memory-management frameworks have been pro-
posed to accommodate larger models on a single GPU [2]–
[5]. They introduce two major memory-saving techniques,
swapping and recomputation, to reduce the memory footprint
of CNN training. Their basic idea is to release the memory
for intermediate results (also referred to as feature maps
interchangeably) in the forward propagation and re-generating
them in the backward propagation. More specifically, swap-
ping copies some temporarily-unused feature maps to the CPU
memory when the GPU memory is tight, and then brings them
back during the backward propagation phase. Recomputation,
instead, drops some feature maps and then recomputes them
when necessary.

However, these techniques have their drawbacks that lead
to performance slowdown. For swapping, the back-and-forth
data transferring between CPU and GPU is very expensive,
especially given the fact that the memory bandwidth is a well-
known performance bottleneck [6]. Prior work even reported
that the time of swapping in/out a layer’s outputs could be
three times higher than a layer’s execution [4]. This indicates
that swapping itself is not efficient to release all the memory
for feature maps. Although the recomputation technique avoids
the bandwidth issue, it introduces significant performance
overhead for recomputing previously-released tensors. The
recomputation is essentially partial of the forward propagation,
which has high resource demands and complex dependencies
thus can’t be executed concurrently with the backward prop-
agation.

This paper proposes a compression-based memory man-
agement approach that can be employed complementarily to
alleviate the above-mentioned issues. The proposed approach
aims at reducing peak memory consumption during CNN
training with minimal performance overhead. Instead of copy-
ing intermediate results to the CPU memory or discarding
them, they are compressed and stored in the GPU memory
and decompressed whenever necessary. Therefore, it does not
suffer from the CPU-GPU bandwidth issue of swapping and
is less computation-intensive than recomputation. To signif-
icantly compress the memory, FreeLunch chooses a lossy
algorithm that has a higher compression rate than lossless
algorithms. Prior work has shown that lossy compression can
still maintain model accuracy with acceptable compression
rates [7]. FreeLunch employs an existing lossy compression
algorithm (called ZFP [8]) that could compress intermediate
results (feature maps) to around 20% with no explicit accuracy
loss. Although the idea of using compression is not completely
novel [7], [9], FreeLunch’s contribution lies in its systematic
approach in reducing the performance overhead of compres-
sion.

First, FreeLunch proposes a parallel workflow that performs
the compression in parallel with the forward computation, and
the decompression in parallel with the backward computation.
By performing the compression/decompression outside the
critical path, FreeLunch hides these operations in the normal
training, which is one major reason why it does not intro-
duce significant performance overhead, as discussed further in



Section III-A.
Second, FreeLunch further reduces the overhead introduced

by memory management operations that are known to be very
expensive. We explain our mechanisms using compression as
an example. The decompression is just the opposite. Naively,
one needs to allocate a compression workspace to perform the
compression and a compressed space to store the compressed
data. After that, one needs to copy the compressed data from
the compression workspace to the compressed space, and
then free both the original tensor space and the compression
workspace. This naive mechanism involves two memory al-
locations, one copy, and two de-allocations for each feature
map.

To reduce these expensive operations, FreeLunch proposes
two mechanisms called Sliding Compression Workspace and
Persistent Tensor Buffers. The first mechanism exploits the
property of the compression algorithm that it always stores the
compressed data in the compression workspace. In particular,
FreeLunch pre-allocates a global compression buffer, per-
forms the compression inside, and then shifts the compression
workspace right with the size of the compressed data. Persis-
tent Tensor Buffers pre-allocates multiple tensor buffers that
persist throughout the training phase and re-uses these tensor
buffers along with the forward and backward propagation.
For example, given a linear CNN model, only three buffers
are required to hold the feature map to be compressed, the
input and the output of the next layer. After each compression,
these tensor buffers will be re-utilized immediately. Overall,
FreeLunch reduces 2n allocations and deallocations (for n
layers) to a constant number of allocations and reduces n
memory copies to zero by using these two mechanisms. Details
are discussed in Sections III-B and III-C separately.

Based on our evaluation on a range of popular Convolutional
Neural Networks (CNNs), FreeLunch reduces up to 35%
memory and achieves up to 70% higher throughput compared
to swapping and recomputation of Superneurons [3]. This is
the reason why it is called as “FreeLunch”.

Overall, this paper has the following major contributions:
1) We design and implement a parallel workflow that could

compress feature maps in parallel with the training
process to hide the compression and decompression
performance overhead.

2) We propose the combination of Sliding Compression
Workspace and Persistent Tensor Buffers mechanisms
that greatly reduce the number of memory management
operations to mitigate the performance overhead of
compression.

3) We perform the evaluation on a range of widely-used
models. These evaluations confirm that FreeLunch could
significantly reduce memory consumption (up to 35%)
but without explicit performance and accuracy loss.

II. BACKGROUND AND MOTIVATION

A. CNNs and CNN Training

As a major type of Deep Neural Networks (DNNs), Convo-
lutional Neural Networks (CNNs) typically consist of different

types of layers such as convolution layers (CONV), pooling
layers (POOL), batch normalization layers (BN), and fully-
connected layers (FC). Some layers contain parameters that are
adjustable through a training process. A CNN training process
aims to adjust these parameters to make the CNN meet the
desired properties specified by training data. It iterates over
three steps: forward propagation, backward propagation, and
gradient updates. In the forward propagation, each CNN layer
transforms the input feature maps into output feature maps,
which becomes the input of the next layer. The backward
propagation reversely traverses these layers to calculate gra-
dients of feature maps and gradients of model parameters. In
gradient updates, gradients are applied to model parameters
that differ depending on the optimizer used during training. In
each iteration, a batch of training data is fed into the DNN
model. For example, in image classification tasks, a batch
could contain 256 images randomly selected from the training
data.

A common trend in CNN model development is to design
deeper and wider models for capturing the complex patterns
in a large amount of training data. It is because larger
models usually result in improved task accuracy. For example,
on the 1K ImageNet recognition challenge [10], ResNet-18
delivers 89% top-5 accuracy with 18 CONV layers while
ResNet152 is able to achieve 94% top-5 accuracy with 152
CONV layers. However, wider and deeper CNN’s expose high
memory demand that easily exceeds the available memory
sizes of the mainstream commercial GPU’s on the market.
This problem has become one of the major hurdles preventing
deep learning practitioners from efficiently exploring complex
DNN architectures [11].

B. Existing GPU Memory Management Techniques and Their
Limitations

During the CNN training, memory consumption comes
mainly from three parts: model parameters, intermediate re-
sults, and convolution workspace. Intermediate results further
include both feature maps generated in the forward propa-
gation and gradients of feature maps (called gradients maps)
in the backward propagation. Model parameters are usually
persistent in GPU memory to allow iterative updates. Gradient
maps and convolution workspace can be freed immediately
after the respective layer computation is finished. However, a
feature map can be released only after the corresponding layer
finishes execution in backward propagation, as the feature map
is used to calculate the gradients of model parameters.

Due to the time gap between the forward and backward
propagation, feature maps are the major source of the high
memory footprint for CNN training, and therefore the ma-
jor optimization target of reducing CNN training memory
footprint [3], [4], [12]. SuperNeurons [3] proposes a dy-
namic memory management framework using two memory
policies, swapping and recomputation, to release the memory
of selected feature maps and enable the training of deeper
and wider models on a single GPU. Subsequent works [4],
[5] utilized and improved upon these policies. Capuchin [4]



made memory management decisions using the time of tensor
accesses tracked at runtime, making their technique applicable
to dynamic computation graphs. It combines asynchronous
swapping and heuristic-based recomputation and determines
the time to apply these policies based on a training phase.
SwapAdvisor [5] focuses on improving the swapping-based
policy. It pre-generates a schedule for swapping using a genetic
algorithm prior to training by jointly optimizing operator
scheduling, memory allocation, and swap decisions. However,
swapping could suffer from performance degradation because
of the limited CPU-GPU bandwidth. The resource-demanding
nature of recomputation makes it suitable for only a few
lightweight CNN layers. With these policies, one can aggres-
sively reduce the GPU memory consumption but at the cost
of a much lower training throughput due to either CPU-GPU
communication bottleneck or recomputation cost.

This work introduces data compression as an alternative
approach that can reduce the memory footprint of DNN
training as swapping and recomputation but achieves higher
training throughput than these policies.

III. DESIGN AND IMPLEMENTATION

FreeLunch aims at enabling larger models to be trained
efficiently on one single GPU. Its contribution lies in its
systematic approach of reducing the performance overhead
of compression. FreeLunch develops a parallel workflow that
can overlap the compression/decompression with the DNN
computation. Further, FreeLunch reduces frequent memory
management operations via sliding compression workspace
and persistent tensor buffer. All of them are discussed as
follows.

A. Parallel Workflow

FreeLunch implements a parallel workflow to hide the
compression and decompression of the feature maps within
the DNN training. It can hide these operations because the
feature map of a layer generated in the forward propagation
will be consumed later in the backward propagation. We can
compress the feature map of a layer concurrently with the
DNN training of its subsequent layer in forward propagation,
and then decompresses it before the reuse in the backward
propagation.

FreeLunch uses different mechanisms to trigger a com-
pression in the forward propagation and a decompression in
the backward propagation. For the forward propagation, the
feature map of a layer can be compressed immediately as long
as it is not used in the computation of its subsequent layers. In
the implementation, FreeLunch maintains a queue of tensors
to be compressed and then compresses tensors upon their
appearances in the queue. The compression is performed by a
thread on its own stream, which is in parallel with the normal
execution of the DNN training. The backward propagation
won’t start until the queue is empty.

A compressed tensor should be decompressed before its
usage in order to hide the decompression. FreeLunch triggers
the decompression on demand. Initially, only multiple tensors

Cpr. Workspace

Cpr. Data Global Cpr. Buffer

Sliding

(a)

(b)

(c)

Fig. 1. Sliding Compression Workspace. (a) shows that the compression
algorithm always stores the compressed data at the front of the compression
workspace. (b) shows the layout of global compression buffer after the first
compression. (c) shows the layout after the sliding.

are decompressed. Then a decompression will start when a
new layer is computed in the backward propagation. Note that
decompressing two tensors is typically sufficient to hide the
decompression for the normal situation. The decompression is
also performed by a separate thread running on its own stream,
which is in parallel with the backward propagation.

B. Sliding Compression Workspace

As mentioned before, a naive compression algorithm re-
quires two memory allocations, one memory copy, and two
memory free operations for each compression. In particular, it
needs to allocate a compression workspace that can be used
to perform the compression, allocate a compressed space for
storing the output compressed tensor, and free the space of
the original tensor as well as the compression workspace.
Similarly, the decompression needs to allocate space for the
decompressed tensor and needs to free the space of the
compressed tensor.

The sliding compression workspace mechanism is proposed
to reduce the number of memory allocations, deallocations,
and copies. In the forward propagation of a DNN model
with n layers, this technique reduces the number of memory
allocations from 2n to one and the number of memory copies
from n to zero. This technique reduces memory operations
in the backward propagation in a similar way. It is based on
the observation of the DNN training: a sequence of tensors
generated in the forward propagation will be accessed in the
reverse order in the backward propagation. Based on this,
we could append all compressed tensors in the compression
workspace instead of copying them out.

The sliding compression workspace pre-allocates a global
compression buffer and performs the compression inside. The
size of the global compression buffer is determined at the setup
phase when the CNN’s computation graph is built. During the
setup phase, each layer has its associated input and output
tensors. If a tensor is eligible for compression, a space is
reserved in the global compression buffer which amounts to
the size of the tensor divided by the targeted compression
rate. Besides the space for compressed tensors, the global
compression buffer also needs to reserve enough space as the
compression workspace, which is necessary for a compression
algorithm to compress a tensor. The size of the compression
workspace can be estimated via ZFP API. In summary, the size



of the global compression buffer is the size of all compressed
tensors plus the size of the compression workspace.

As shown in Figure 1(a), the ZFP compression algorithm
will store the compressed data at the beginning of the
compression workspace. Figure 1(b) shows the result after
the first compression in the global compression buffer. To
avoid copying the first compressed tensor, the compression
workspace will be shifted right by the size of the compressed
tensor (see Figure 1(c)). Then the second compressed tensor
will be appended just after the first compressed tensor. Since
the compressed tensors will be decompressed in the Last-In-
First-Out order, the sliding compression workspace effectively
avoids any memory copy.

C. Persistent Tensor Buffers

Persistent tensor buffers also aims to reduce memory man-
agement operations. More specifically, it avoids the dealloca-
tion of the space for the original tensor after the compression
and the allocation of the space for decompression. The basic
idea is to pre-allocate spaces that can be reused by all tensors.
Note that traditional memory pool-based solutions (e.g., tensor
pool in Superneurons [3]) are not applicable because the
memory space for a tensor to be compressed has to be
continuous to facilitate data compression.

Persistent tensor buffers pre-allocates the minimum number
of spaces called tensor buffers at the beginning of the training.
These tensor buffers are persisted during the training. The size
of a persistent tensor buffer is set to be the maximum size in
order to ensure its reuse for any tensor. Currently, we statically
determine the minimum number of buffers that a model needs.
For example, linear models like AlexNet and VGG require
only three tensor buffers while residual networks require six
tensor buffers due to their residual and join connections.

D. Theoretical Analysis

This section compares the theoretical memory consumption
of FreeLunch and some counterparts. Following the practice
in Superneurons [3], memory consumption from both model
parameters and the convolution workspace are ignored as they
are the same across different approaches.

Let the memory consumption of the i-th layer be l
(f)
i in

the forward propagation and l
(b)
i in the backward propagation.

A naive memory allocation strategy is to pre-allocate indepen-
dent space for each tensor, resulting in a memory consumption
of

∑n
i=1 l

f
i +

∑n
i=1 l

b
i , where n is the number of layers in

the CNN. One approach to reduce memory footprint of CNN
training is liveness analysis [3], which frees gradients maps
generated in the backward propagation along with the stashed
feature maps. Liveness analysis results in a peak memory
consumption of

∑n
i=1 l

f
i + lbn, implying up to 50% of memory

savings. We next discuss how swapping, recomputation, or
compression can be added on top of liveness analysis to
provide more memory savings.

For the swapping policy, some feature maps are swapped
out to the CPU. The peak memory consumption is reduced

to
∑n

i=1(l
f
i /∈ checkpoints) + lbn, where checkpoints are the

tensors swapped to the CPU.
For the recomputation policy, we use the implementation

from Superneurons [3], where tensors from the four least
computation-intensive layers (pooling layer, activation layer,
local response normalization layer, and batch normalization
layers) are recomputed in the backpropagation. The peak mem-
ory consumption for this policy is

∑n
i=1(l

f
i /∈ released)+ lbn,

where released refers to the tensors from the four layers.
The sliding compression workspace in FreeLunch pre-

allocates a global compression buffer, which stores com-
pressed tensors and acts as compression workspace for a
compression algorithm to compress a tensor. It leads to a
peak memory consumption of (

∑n
i=1 l

f
i )/r + C + lbn, where

r is the compression rate and C is the size of compression
workspace. Implementing persistent tensor buffers improves
throughput but increases this peak memory consumption as
k tensor buffers are pre-allocated. The peak consumption for
FreeLunch with persistent tensor buffers is (

∑n
i=1 l

f
i )/r+C+

k ∗max(lfi ) + lbn.

IV. EVALUATIONS

We conduct a set of experiments to examine the efficacy of
FreeLunch. Our evaluation aims at answering the following
questions. (1) Can FreeLunch improve training throughput
while reducing memory consumption of CNN training com-
pared with other GPU memory management policies? (2) How
effective are the optimizations in FreeLunch compared with
other compression-based baselines? (3) What is the effect of
compression in FreeLunch on model accuracy? (4) One can
combine compression with other policies to achieve memory
reduction without affecting accuracy. What is the performance
of hybrid policies that combine FreeLunch with other policies?

We first describe the experiment settings in Section IV-A
and then report our experiment results in Sections IV-B and
IV-C.

A. Experiment Settings

Workloads. We evaluated FreeLunch on five state-of-the-art
CNN models and workloads, including the AlexNet [13],
VGG16 [14], ResNet32, ResNet152, and ResNet256 [1]. We
choose these workloads because they represent commonly-
used CNN architectures. VGG and AlexNet have layers that
take more computation time, whereas the ResNet models
are deeper but less computation-intensive layers. We use
Cifar10 [15] for ResNet32 and ImageNet [10] for the rest of
these models.

Counterparts for Comparison. We compare FreeLunch to
three policies from prior works as follows. The memory
consumption of these policies is analyzed in Section III-D.

• Liveness: This policy is the liveness analysis optimization
from Superneurons [3]. It allocates memory spaces for
tensors from each layer in the forward propagation. Then
it tracks the live tensors before and after each layer in the
backward propagation and free tensors if no subsequent
layers need them. Liveness analysis enables different



tensors to reuse the same physical memory at different
time.

• Swapping: This policy is synchronous swapping from
Superneurons [3]. If the system runs out of memory upon
a tensor allocation, some feature maps are swapped to the
CPU memory synchronously.

• Recomputation: This policy is from Superneurons [3],
where tensors from the four least computation-intensive
layers (e.g., pooling and batch normalization layers) are
recomputed.

The experiments were conducted on a server equipped with
Intel Xeon CPU E5-2620v3 processors with 24 logical cores,
64GB RAM and Nvidia Titan X GPU with 12GB memory.
The CUDA version is 11.1 and cuDNN is 8.0.

B. Comparison to Other Policies
Figure 2 shows the performance and memory consumption

of FreeLunch and other policies with different batch sizes.
The compression rate of FreeLunch was set to five for these
experiments. Overall, FreeLunch allows the training of larger
models by reducing the peak memory footprint during training.
At the same time, FreeLunch achieves higher throughput than
swapping and recomputation thanks to its parallel workflow
and systematic optimizations that reduce memory operations.
Quantitative results are reported below.

Throughput. According to Figure 2, FreeLunch achieves
much better throughput than recomputation and swapping
across models and batch sizes. For example, for ResNet152,
it achieves up to 70% throughput improvement over the
swapping and up to 32% over the recomputation (at batch
size 44).

The throughput improvement is due to two major reasons.
First, FreeLunch reduces memory footprints and thus the
overhead of memory operations during the training. When the
available GPU memory is tight, each memory management
operation will take a longer time. This also explains why
the throughput of Liveness could be worse than FreeLunch
for ResNet32 and VGG16 with large batch sizes. Liveness
involves many management memory operations to allocate
space for feature maps in forward propagation and free feature
maps that are already consumed in the backpropagation. These
memory operations could greatly slow down the training. In
contrast, FreeLunch reduces memory management operations
via memory optimizations described in Sections III-B and
III-C.

Second, with larger batch size, the computation overhead of
compression can be better overlapped with forward propaga-
tion in FreeLunch. The swapping, however, suffers from the
increased communication overhead as the batch size increases
because of the limited CPU-GPU bandwidth. Similarly, the
recomputation also suffers from a higher throughput degra-
dation because the computation time increases with larger
batch size. These experiments also indicate that even when
the GPU memory is exhausted, FreeLunch can still effectively
overlap compression computation with the model training by
leveraging idle computing resources.

We also noticed that the training throughput (im-
ages/second) become worse with larger batch sizes. This
phenomenon is observed in several prior work as well [3],
[4]. It is because memory operations take more time when the
limited available GPU memory. Also, as mentioned in [4], the
convolution operators could fall back to a slower convolution
algorithm due to memory limit.

Memory Consumption. Figure 2 shows that similar to swap-
ping and recomputation policies, FreeLunch enables CNN
training with significantly larger batch sizes that is not feasible
for the Liveness approach. The Liveness approach goes out
of memory for larger batch sizes as shown in Figure 2.
Compared to swapping, FreeLunch can accommodate the same
batch size in 35% less memory and have up to 70% better
throughput (see ResNet152 with batch size 44). Compared to
recomputation, FreeLunch has more memory consumption for
ResNet32, AlexNet and VGG16 but not for ResNet152. It is
because ResNet152 has a larger number of layers and thus
more feature maps to persist in GPU memory.

Memory savings from FreeLunch are higher when fea-
ture maps take more GPU memory compared with model
parameters, making FreeLunch a more appealing solution
for parameter-efficient and deeper CNNs (e.g., ResNets). For
Alexnet [13] with batch size 128, the size of all feature maps
is 940.5 MB. The size of the sliding compression workspace
is 214.5 MB and the persistent tensor buffers are 425.3 MB.
The memory saving for feature maps is 31%. However, the
memory consumption coming from model parameters and
other overheads is around 3 GB, which results in a smaller
overall memory reduction. For ResNet152 with batch size 24,
the total size occupied by feature maps is around 4.6 GB. The
size of the sliding compression workspace is 933 MB and
the persistent tensor buffers are 456.8 MB. The size of the
persistent tensor buffers is much smaller than the total size of
feature maps, leading to higher memory savings.

Comparison with Asynchronous Swapping. Superneurons
uses synchronous memory copies for its swapping, but state-
of-the-art solutions Capuchin [4] and SwapAdvisor [5] use
asynchronous memory copies to overlap the swapping with the
model training. For comparison, we also implemented an asyn-
chronous swapping policy (called async swapping) by replac-
ing the compress/decompress with cudaMemcpyAsync in
the parallel workflow. We also enable persistent tensor buffers
optimization to remove the cudaMalloc/cudaFree oper-
ations for the async swapping.

Table I shows the performance comparison of FreeLunch
and the asynchronous swapping. Overall, the throughput of
FreeLunch is around 4-38% higher than async swapping across
all models. When we increase the batch size, FreeLunch could
achieve a higher speedup because the memory transfer band-
width is the bottleneck for the async swapping. In particular,
FreeLunch can achieve a speedup of 1.2×, 1.38× and 1.14×
for ResNet32 with batch size 512, VGG16 with batch size 32
and ResNet152 with batch size 44 respectively.

Comparison with the prior work [7]. The prior work [7]



TABLE I
THE IMPROVEMENT WITH PERFORMANCE OPTIMIZATIONS OVER
ASYNCHRNOUS SWAPPING. THE BATCH SIZE OF ALEXNET AND

RESNET32 IS 128, AND FOR THE REST IS 24.

images/second ResNet32 Alexnet VGG16 Resnet152 ResNet256
Async swapping 314 290 19.9 10.68 6.12

FreeLunch 327 383 26.3 11.1 6.9
speedup 1.04× 1.32× 1.32× 1.04× 1.13×

proposes to leverage data compression to reduce memory
consumption during CNN training. Their focus is on how
to dynamically adjust compression rate during the training
process to avoid accuracy degradation while reducing memory
footprint. However, their implementation lacks systematic op-
timization to avoid performance overhead caused by compres-
sion algorithms. The memory management framework without
optimizations resembles the memory management framework
in [7]. We implemented their approach in our framework and
compared the throughput to FreeLunch.

Table II reports the performance improvements in
FreeLunch due to the sliding compression workspace and
persistent tensor buffers optimizations as compared to [7]. The
two optimizations proposed in this work remove the non-trivial
overheads from memory allocations and copies of parallel
workflow, leading to 1.3×-1.9× speedups in throughput.

TABLE II
THE IMPROVEMENT OF PARALLEL WORKFLOW IN FREELUNCH WITH
OPTIMIZATIONS IN SECTIONS III-B AND III-C. THE BATCH SIZE OF

ALEXNET AND RESNET32 IS 128, AND THE REST IS 24.

images/second ResNet32 Alexnet VGG16 Resnet152 ResNet256
Without optimizations [7] 255 212 15.6 6 3.6

FreeLunch 327 383 26.3 11.1 6.9
speedup 1.28× 1.81× 1.69× 1.85× 1.92×

C. Performance of A Hybrid Policy with Compression and
Async Swapping

Prior works [7] along with our analysis on accuracy have
shown that accuracy can be maintained if tensors from only
convolution layers are compressed. Figure 3 shows the effects
of the compression algorithm (ZFP) on the model convergence
using ResNet32 on Cifar10. Compression applies to the tensors
from convolutional layers. The compression ratio for these
experiments is set to 8. The accuracy curve with compression
is similar to the one without compression, indicating a minor
influence on model convergence. These results echo the ob-
servations in prior work [7], which reports no or negligible
model accuracy degradation with proper compression rates.

To further reduce memory footprint without affecting ac-
curacy, one can combine compression with other policies
and apply compression on tensors from certain layers and
apply other policies (e.g. swapping or recomputation) on the
tensors from the rest of the layers. In this section, we present
the performance results of a hybrid policy that combines
FreeLunch with async swapping. We use FreeLunch on the
activation maps from convolutional layer and perform async
swapping on the intermediate results from other layers. This

policy is implemented in the parallel pipeline along with the
optimizations described in the paper. The compression ratio is
set to 8, the same as our accuracy experiments.

Table III shows the results of async swapping compared
to the memory management policy described above. Overall,
although this hybrid policy doesn’t have better performance
than FreeLunch alone, it has much better performance than just
async swapping. It demonstrates that compression can help us
achieve better throughput when integrated with other policies
that have been optimized in previous frameworks.

TABLE III
ASYNC SWAPPING COMPARISON WITH FREELUNCH + ASYNC SWAPPING

images/second ResNet32 Alexnet VGG16 Resnet152 ResNet256
Async swapping 314 290 19.9 10.68 6.12

FreeLunch + Async swapping 318 366 23.3 11.52 6.9
speedup 1.012× 1.26× 1.17× 1.07× 1.13×

V. RELATED WORK

CNN memory management is an active area of research
owing to the constantly increasing memory requirements of
these models. Recent works [2]–[5] have focused on using the
policies of swapping or recomputation in different capacities.
vDNN [12] and Superneurons [3] use swapping by offloading
and prefetching tensors. They use a static computation graph
to make memory policy decisions. Capuchin [4] uses a similar
approach but it leverages the predictive nature of tensor
accesses during CNN training. They use a timestamp-based
technique to decide when to prefetch a tensor asynchronously
and update the time of prefetch if the model training has to
synchronize. FreeLunch is based on a similar observation but
instead of using time, it leverages the order of accesses to im-
prove the throughput. Swapadvisor [5] trains RL simulations
to find the best order of memory swapping, allocations, and
compute to perform in the system. They constrain their search
space by using a size-class based memory allocator.

Recomputation has also been incorporated into Superneu-
rons [3] and Capuchin [4]. Superneurons statically decides the
layers to recompute and then drops their tensors in the forward
phase and regenerates them in the backward phase. Capuchin
shows that this static policy cannot work and uses a heuristic
to decide when to use recomputation compared to swapping.
While FreeLunch does use more memory than Recomputation,
it offers better throughput and can be executed in parallel.
Recomputation is harder to execute in parallel because of
lineage dependencies and complex forward kernels.

Compression as a memory management technique has been
explored in Gist [9]. Gist includes a fixed lossless compression
policy that applies to fixed layer combinations, for example
CONV-ReLU. They also implement a lossy compression pol-
icy, which is similar to quantization. They encode 2,3 and 4
values inside 4 bytes using their own encoding technique and
call them FP16, FP10 and FP8. The maximum compression
they can obtain is 4×. While quantization can have faster
implementations, this work is motivated by newer techniques
that can offer much higher compression ratios, in our work we



Fig. 2. Performance and memory comparison of various policies during model training. FreeLunch has up to 35% less memory consumed and up to 70%
better throughput as compared to swapping and recomputation. The Liveness approach goes out of memory for larger batch sizes.

0 5000 10000 15000 20000 25000
Iterations

55

60

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

Compression No compression

Fig. 3. Accuracy for FreeLunch vs no compression (ResNet32 on Cifar10).
Compression rate is eight. Compression is applied to tensors from convolu-
tional layers. It shows that a higher compression ratio than five can be used
without having an effect on the accuracy of the training process.

used a compression ratio of 5× and 8× but the compression
ratio can go upto 13× if using a dynamic compression rate
schedule [7], leading to higher memory savings. Notably, Gist
also uses a static memory allocator from CNTK [16] to hide
the overhead caused by dynamic memory management. The
allocator attempts to reuse memory spaces for tensors that
have different temporal lifetimes and requires an analysis of
temporal uses of tensors as input. The memory consumption
of this allocator will be similar or higher than the persistent
tensor buffers optimization as we only allocate enough space
for tensors that share temporal lifetimes.

VI. CONCLUSION

Previous CNN memory management policies incur signif-
icant overhead due to the limited CPU-GPU memory capac-
ity or the lack of a parallel implementation. We introduce

FreeLunch a compression-based policy that improves through-
put over previous policies by up to 70% while consuming
up to 35% less memory. FreeLunch can be incorporated into
existing frameworks like Capuchin [4]. For example, Capuchin
proposes a mechanism to decide the timings to swap in/out
a tensor. A similar mechanism can be applied to determine
the timings to compress/decompress tensors. Also, we use an
additional cudaStream for compression/decompression, which
could potentially decrease training throughput due to GPU
resource contention. To address the problem, understanding
GPU utilization from each forward and backward layer com-
putation can help us decide the best timings for compression
and decompression.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[3] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu,
and T. Kraska, “Superneurons: Dynamic gpu memory management
for training deep neural networks,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18, 2018, p. 41–53. [Online]. Available:
https://doi.org/10.1145/3178487.3178491

[4] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and
X. Qian, “Capuchin: Tensor-based gpu memory management for deep
learning,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 891–905.

[5] C.-C. Huang, G. Jin, and J. Li, “Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 1341–1355.

[6] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker,
“Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and



gpudirect,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 1, pp. 94–110, 2019.

[7] S. Jin, G. Li, S. L. Song, and D. Tao, “A novel memory-efficient deep
learning training framework via error-bounded lossy compression,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2021, pp. 485–487.

[8] P. Lindstrom, “Fixed-rate compressed floating-point arrays.” [Online].
Available: doi: 10.1109/TVCG.2014.2346458

[9] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko,
“Gist: Efficient data encoding for deep neural network training,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture, ser. ISCA ’18. IEEE Press, 2018, p. 776–789. [Online].
Available: https://doi.org/10.1109/ISCA.2018.00070

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[11] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[12] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” 2016.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates Inc.,
2012, p. 1097–1105.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

[15] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (cana-
dian institute for advanced research).” [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html

[16] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
2135. [Online]. Available: https://doi.org/10.1145/2939672.2945397


