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Abstract—Recurrent Neural Networks (RNN) are widely used
for various prediction tasks on sequences such as text, speed
signals, program traces, and system logs. Due to RNNs’ inher-
ently sequential behavior, one key challenge for the effective
adoption of RNNs is to reduce the time spent on RNN inference
and to increase the scope of a prediction. This work introduces
CFG-guided compressed learning, an approach that creatively
integrates Context-Free Grammar (CFG) and online tokeniza-
tion into RNN learning and inference for streaming inputs.
Through a hierarchical compression algorithm, it compresses
an input sequence to a CFG and makes predictions based on
the compressed sequence. Its algorithm design employs a set of
techniques to overcome the issues from the myopic nature of
online tokenization, the tension between inference accuracy and
compression rate, and other complexities. Experiments on 16
real-world sequences of various types validate that the proposed
compressed learning can successfully recognize and leverage
repetitive patterns in input sequences, and effectively translate
them into dramatic (1-1762×) inference speedups as well as much
(1-7830×) expanded prediction scope, while keeping the inference
accuracy satisfactory.

Index Terms—recurrent neural networks, data compression,
context free grammar, tokenization

I. INTRODUCTION

Recurrent Neural Network (RNN) [1] is very effective in
modeling and predicting temporal sequences. It has been
successfully applied to a broad range of machine learning
tasks. Because of RNN’s high prediction accuracy, there is
also an increasing interest in applying RNNs for sequence
prediction tasks in other domains such as program analysis [2],
data prefetching and cache placement in computer archi-
tecture [3], [4], memory management [5], network caching
policy design [6], system log analysis [7], and recommender
systems [8]. As tasks in these domains have real-time or
near real-time requirements, speeding up RNN inference is
an important problem.

Due to RNNs’ inherently sequential behavior, reducing
the time spent on RNN inference is a challenging problem.

Although many efforts have been taken to accelerate RNN
inference, for example by designing efficient model archi-
tectures [9], model compression [10], sparsification [11], and
many other approximations [12], the demands for higher speed
remain as the application domains and data volume for RNN
keep expanding dramatically. Our study showed that a 1-layer
RNN model takes milliseconds to predict the next event on
GPUs while prediction tasks in computer systems such as
data prefetching and cache replacement typically need results
in nanoseconds. The performance issue becomes worse when
larger models are used to achieve higher accuracy.

Moreover, demands for long-term large-scope predictions
are increasingly popular for RNN. Rather than predicting
only the next event, many uses of RNN desire predictions
of the next N (N > 1) events so that they can start
the preparations or take actions earlier. That is especially
important if the response (e.g., prefetching or system migra-
tion) takes time. There are some attempts to enable large-
scope predictions [13]–[15], but they are mostly from the
traditional angle, trying to adjust the RNN model architecture
or hyperparameters. The prior efforts in pursuing the two
important objectives of RNN inferences, improving its speed
and scope, have been largely going separately. Large room for
improvement remains in both.

In this paper, we present CFG-guided compressed learn-
ing, a novel method that, by integrating CFG and online
tokenization into RNN inference, simultaneously improves
the state-of-the-art on both objectives significantly. Unlike
popular Deep Neural Network (DNN) compression which
compresses DNN models, CFG-guided compressed learning
compresses input data sequences. It is applicable to sequences
that consist of many repeated subsequences. For instance, data
from sensors in a factory may show similar patterns along
time; system logs can have the same event sequences due to
repeated operations; the execution traces of a program often
manifest repeated patterns. The basic rationale is to compress



the data sequence by automatically identifying and reducing
the repeated subsequences to an abstract format (i.e., a non-
terminal symbol in CFG). If the learner can directly learn and
make predictions on the compressed sequence, it may benefit
from the identified repetitions in both inference speed and
prediction scope.

There are three research questions (RQ) for realizing the
idea effectively:
• RQ1: How to compress a sequence to keep its statistical

properties such that RNNs can still learn patterns from
the compressed sequence?

• RQ2: How to conduct inference on an online generated
data sequence (that is not compressed) given that the
model is trained on the compressed sequences?

• RQ3: How to support continual model refinement in an
online fashion?

When answering the questions, it is important to note three
principles. (i) Domain independent. The solution should work
across domains, which is essential for its general applicability
for data sequences with repetitive patterns. It is, for instance,
possible to use the knowledge of program code structure to
compress program traces [16], but such a method cannot apply
to sensor data, health data, or data in many other domains,
and hence does not fit the need. (ii) Beneficial. The overhead
of the solution should not outweigh its benefits. (iii) Staying
accurate. Users’ satisfaction on model accuracy should not be
the price for the improvement of inference speed and scope.

This paper presents the first known solution to these open
questions by proposing CFG-guided compressed learning.
It uses no domain knowledge and hence stays completely
domain-independent. It learns from compressed sequences and
predicts, at one time, not one single event but a sequence of
events, achieving both large speedups and also large prediction
scopes. It, meanwhile, offers an easy-to-use knob allowing
users to keep model accuracy at a satisfying level while
enjoying the speed and scope benefits.

CFG-guided compressed learning achieves these by intro-
ducing CFG and online tokenization into RNN inference.
Specifically, it answers RQ1 by employing CFG to compactly
represent the input data sequence while keeping it in a form
amenable for RNN-based learning. It does it by building on
an existing linear-time hierarchical compression algorithm,
Sequitur [17]. Both RNN training and inference can operate on
the CFG representation smoothly. It answers RQ2 by enabling
on-the-fly incremental compression via online tokenization as
new events arrive and, if necessary, calls the RNN model
to make predictions based on the tokenized event sequence.
Each prediction is a token in the dictionary, which can be
a terminal (one single upcoming event) or a non-terminal
(a sequence of upcoming events). It answers RQ3 through
continuous compression-based refinement which refines the
RNN model on the compressed sequence continuously and
efficiently. Section III explains the algorithm in detail.

Section IV reports experiments on 16 real-world data se-
quences including program function calls, memory traces,
and system logs. The results show that compared to RNN

predictors, compressed learning achieves 1-1762× prediction
speedups for its large prediction scopes (up to 7830 events
per prediction). For the same prediction scope, compressed
learning gives as much as 54% higher prediction accuracy
than default RNN predictions.

Overall, this work makes the following main contributions:
• To the best of our knowledge, this is the first work

integrating CFG and sequence compression into RNN
for both faster prediction and larger prediction scope on
streaming inputs.

• It proposes CFG-guided compressed learning as a novel
learning paradigm for RNN-based sequence modeling.
The algorithm is applicable to domains whose data se-
quences have repetitive patterns.

• It overcomes the issues caused by the myopic nature of
online tokenization through efficient rollback, addresses
the tension between compression rate and inference ac-
curacy through accuracy-conscious lowering, and mini-
mizes runtime overhead through partial compression.

• It analytically studies the efficiency benefits of com-
pressed learning, and empirically validates its benefits
in improving both the prediction scope and the inference
speed of RNN.

II. BACKGROUND

Context-Free Grammar (CFG) is a formal grammar that
consists of production rules. Each production rule is of the
form A→ β, where A is a single non-terminal symbol and β
is a sequence of terminals and non-terminals. It is context-free
because the left-hand side (LHS) of the production rule can
always be replaced with the right-hand side (RHS) regardless
of the context of the LHS (non-terminal). To compress a data
sequence, one can transform the sequence into a CFG. The
process is called grammar-based compression.

Sequitur is a classic grammar-based compression algorithm,
originally proposed by Nevill-Manning and Witten [17]. It
infers a hierarchical structure from a sequence of discrete
symbols in linear time. These discrete symbols are treated as
terminal symbols. For a given sequence of symbols, it derives a
CFG where each rule reduces a repeatedly appearing sequence
of terminals into a non-terminal symbol. For example, if
the sequence is “abcab”, the algorithm produces CFG: S
-> AcA, A -> ab. By substituting repeating strings (e.g.,
“ab”) with new non-terminal symbols (e.g., “A”), it produces
a concise representation of the input sequence (e.g., “AcA”).

We have not seen its use in RNN. This work selects Sequitur
as the compression algorithm for the fit of the compres-
sion results for RNN and its domain-independent property.
Some similar grammar-based compression algorithms [18]–
[20] could be used as well.

III. COMPRESSED LEARNING ALGORITHM

Compressed learning learns from compressed sequences
either offline or online, and predicts not one single event but a
sequence of events. It builds on the grammar-based compres-
sion algorithm Sequitur, which (incrementally) compresses a



Sequence: 
x abc abc abc abc d abc abc abc abc d abc abc abc abc d abc abc abc abc d ae ae ae ae fabcg abc abc

Compression result (CFG) from Sequitur: 
0 → x 1 1 2 2 f 3 g 4 
1 → 5 5                                           abcabcabcabcdabcabcabcabcd 
2 → 6 6                                           aeae 
3 → a b c                                        abc 
4 → 3 3                                           abcabc 
5 → 4 4 d                                        abcabcabcabcd 
6 → a e                                           ae

Compressed sequence after lowering: 
x 5 5 5 5 6 6 6 6 f 3 g 3 3

Dictionary: 
3: abc 
5: abcabcabcabcd 
6: ae 
and terminals a,b,c,d,e,f,g,x,y

Time Event Tokenized Seq C Input to RNN Prediction

0 S [START] ✦S S x
1 x S✦x x 5 (abcabcabcabcd)
2 a Sx✦a
3 b Sx✦ab
4 c Sx✦3
5 a Sx✦3a
6 b Sx✦3ab
7 a Sx✦3aba 3aba b
8 b Sx3aba✦b b a
9 d Sx3abab✦d d a
10 a Sx3ababd✦a a b
11 y Sx3ababda✦y y a
12 a Sx3ababday✦a a b
13 b Sx3ababdaya✦b b a
14 f Sx3ababdayab✦f f 3 (abc)
15 a Sx3ababdayabf✦a
16 b Sx3ababdayabf✦ab
17 c Sx3ababdayabf✦3 3 g
18 g Sx3ababdayabf3✦g g 3 (abc)

Refine

Model 

(optional)

- Compress the sequence “x△ababdayabf▿g”,  

- Use the compressed result “x377day7fg” to refine (train) model M, 

- Update dictionary with a new terminal symbol {7->ab}.

19 a

… … …

Stage 3: Online inference (and training) on a test sequence: Stage 1: Offline compression of a sequence:

(a)

(c)

Stage 2: Offline RNN training using compressed sequence:

fW fW

x 5

fW

5

fW

5

predictions

Inputs

3 3 5 x

fW

5

6
targets 5 5 5 5 6

(b)

Fig. 1. Running example of compressed learning: (a) offline compression of a train sequence, (b) offline RNN training using compressed sequence with input
length of 5 and batch size of 1, and (c) online inference and optional model updates on a test sequence. In (c), the diamond symbol ♦ represents “C.cursor”
in Figure 2, which indicates the start of the subsequence in C that has not been sent to the predictive model M . Cells in the “Prediction” column are filled
in red if the predictions are wrong.

sequence into a CFG. The learning and inference operate on a
variant of the CFG. Compressed learning has three stages:
(1) offline compression of the training sequences to build
the vocabulary and compressed sequences, (2) offline RNN
training using compressed sequences, and (3) online RNN
inference and optional online model refinements. The three
stages are compatible with the typical workflow for RNN-
based application development.

In this section, we first introduce a running example to illus-
trate the three stages, and then explain the major complexities
and the general algorithm.

A. Running Example

We use the example in Figure 1 to convey the intuitions
of compressed learning. Figure 1(a) illustrates the first stage–
that is, how the grammar-based compression works on a
sequence. The data sequence is compressed by Sequitur into
the CFG shown in Figure 1(a), consisting of seven rules. Each
rule shows what sequence (on the RHS of the rule) a non-
terminal symbol (LHS) represents. Rule 0 represents the entire
sequence, and each of the other rules represents a subsequence
in the entire sequence. For reference, we expand the RHS of
each rule (except Rule 0) and put the results to the right of
the CFG rules. Below the CFG is a lowered representation
of the RHS of Rule 0 after some symbols in the RHS are
expanded. The expansion process is called lowering, which
makes the compressed sequence into a form friendly for RNN
training. Details will be explained in Section III-C. Below

the lowered sequence is a dictionary, which records all the
non-terminal symbols that appear in the lowered sequence,
along with what subsequence each of them represents. The
dictionary, by default, includes all the terminal symbols in the
train sequence.

Figure 1(b) shows the offline RNN training in compressed
learning. The lowered sequence is used as the input to train
the RNN-based predictive model.

Figure 1(c) shows the inference steps for a test sequence.
After the inference starts, at time 1, the arriving event x
triggers a prediction by the trained RNN. The prediction
gives out a token 5, which corresponds to a subsequence of
events abcabcabcabcd represented by the RHS of rule 5
in Figure 1(a). The events coming in the next 5 time steps
(time 2–6) are all consistent with that prediction, and hence
the RNN does not need to be invoked to make predictions at
those times. Note that as those events arrive, our compressed
learning algorithm automatically tokenizes them, as illustrated
by the replacement of abc with token 3 at time 4. Formally,
given an event sequence s and a vocabulary V , one can
replace subsequences of events in s with the corresponding
non-terminal symbols in V . The process is called tokenization
and the resulting sequence is called tokenized sequence. A
compressed sequence is also a tokenized sequence.

At time 7, the actual event a differs from the prediction (c),
which prompts the RNN to discard the rest of its prediction,
and make another prediction based on the subsequence that
has not yet been fed to the RNN—that is, the subsequence



following ♦ in the “Tokenized Seq C” column in Figure 1(c),
3aba in this case. The prediction is a single event b, which
matches the actual event at time 8. At this time, because no
prediction is there for the next time step, the RNN is triggered
to make another prediction. This process continues.

At time 14, the RNN sees f and generates another sub-
sequence (abc represented by token 3) as the prediction,
which proves to be correct. After time 18, one may want to
refine the model based on the newly collected event sequence.
Compressed learning starts an online compression on the
uncompressed event subsequences in Tokenized Seq C and
has the RNN learn from the compressed results to get refined,
illustrated by the “Refine Model (optional)” row in Figure 1(c).
The process then continues.

B. Issues for Algorithm Design

To make the compressed learning algorithm work in general
cases, we must address several issues.

Issue-1: Myopic nature of online tokenization. Tokeniza-
tion is short-sighted. Consider a simple example that has a
dictionary with only two entries:

T1: ab T2: abc
For an input sequence abcabc, suppose that the RNN predicts
T1 at the starting point. As the tokenizer sees the first two
events ab, it tokenizes them into token T1, and feeds it to
the RNN. The RNN would then update its hidden state and
make a prediction of the next token, say another T1. But when
the third event c arrives, the tokenizer may realize that the
first two events ab are actually part of a larger token T2 (for
abc). So for the RNN to make predictions based on T2, the
compressed learning must be able to deal with the premature
tokenizations and allow the RNN to undo its state changes
when necessary. Such an issue may appear whenever some
tokens in a directory are the prefixes of other tokens (e.g.,
tokens 3 and 5 in the example in Figure 1(a)). This issue
entails further questions on the influence of the rollbacks on
the performance of compressed learning. Would they incur
extra invocations of the RNN? Would they cancel out the time
savings from compressed learning?

Issue-2: Runtime compression overhead. To refine the RNN
at runtime, online compression is needed to generate the
compressed sequences so that they can be used to continuously
train the RNN model on the fly. Although the refinement is
only optional, it is still necessary to minimize the runtime
overhead in online compression to maximize the performance
benefits of compression learning.

Issue-3: Traps of large tokens. Although a large token could
help enable large-scope predictions for its representation of
a long subsequence, it could also form a trap. It is because
large tokens tend to appear less frequently in the compressed
sequence, which makes it harder for RNN to learn about
the patterns in the compressed sequence. In Figure 1(a), for
instance, the top-level tokens in the RHS of rule 0 each occur
at most twice, but in the lowered sequence in the same figure,
some tokens (e.g., 5, 6) appear twice as often. The compressed

learning hence must be able to deal with the tradeoff between
token granularities and frequency.

C. Algorithm

In this part, we present the full algorithm of compression
learning while highlighting how the three main issues are
addressed in the design.

The first two stages in compressed learning produce a
vocabulary V (illustrated in Figure 1(a) as a dictionary) and
an offline-trained RNN model M (illustrated in Figure 1(b)).
The vocabulary V contains both non-terminal symbols V N

in compressed sequences and all the terminal symbols (i.e.,
unique events) V E in uncompressed sequences, i.e., V =
V N∪V E . Each non-terminal symbol represents a subsequence
of events, vN = vE1 , · · · , vE|vN |, where vEi ∈ V E . For the
description purpose, we simplify the notation of an event vE

to e, and refer to both vN ∈ V N and e ∈ V E as a token.
As the first two stages are straightforward applications of the
Sequitur compression and standard RNN training, we focus
our discussion on the third stage.

Problem definition. The problem of the online prediction
is that, given an already emitted sequence of events s =
e1, · · · , et, our trained model M shall be able to predict the
upcoming events v∗t+1 = et+1, · · · , et+|v

∗
t+1| ∈ V such that:

v∗t+1 = argmax
v

Pr(e1, · · · , et, v|M), (III.1)

where Pr(.|M) calculates the probability of the occurrence
of a sequence given model M . Here, v∗t+1 can be either a
non-terminal symbol that represents a sequence of events or a
terminal symbol that represents a single event.

Algorithm description. Figure 2 outlines the online infer-
ence and model refinement algorithm of compressed learning.
Specifically, at a newly emitted event e, the following happens.

1) Tokenization: The algorithm (line 24 in Figure 2) to-
kenizes e in the context of the earlier events. For a given
sequence, a finite state machine (F in Figure 2 line 15) tries
to find a token in the vocabulary, the content of which matches
with the given sequence. The tokenization subroutine appends
the recognized token to the end of the tokenized sequence C;
sometimes its old suffix may need to be replaced because a
longer match is found. The tokenization algorithm is shown
in Figure 3. It appends the recognized token (line 5) to the
end of the tokenized sequence C (line 15). Sometimes C’s
old suffix may need to be replaced because a longer match is
found, triggering the rollback process in lines 9-12.

Rollback (solution to Issue-1). The tokenizer helps track
the starting point (C.cursor) of the part of C that has not
yet been fed into the predictive model M . The replacement
of C’s suffix (the part following ♦) in tokenization could
necessitate the update of the cursor. If the current position
of the cursor is in the suffix replaced by the new token, the
cursor is updated to the position right before the new token.
To make M be able to overcome the premature tokenization
and conduct predictions based on the new token, compressed
learning records the recent hidden states of M in memory so



1. // Predict and learn with compression 
2. Input: 
3.   P: trace generator 
4.   V: initial vocabulary 
5.   M: initial predictive model 
6. Output: 
7.   M: updated predictive model 
8.   V: updated vocabulary 
9. Constants: 
10.   START, EOF: markers of the start and end of input 
11.   L: length of a learning interval 
12.   FREQ: the minimum frequency for a word to get into the vocabulary 
13.   
14. // create a tokenizer F to recognize the token in V 
15. F = tokenizerCreation (V)  
16. n = 0  // count the number of events 
17. C = emptyList  // store the tokenized sequence 
18. i = 0 
19. v = M.predict( START )  // predict the upcoming subsequence of events   
20. C.cursor = 1 // track the end of the part of C that has been used by M 
21. while (e = P.generate () != EOF) { // a new event is produced 
22.     n ++ 
23.     // recognize the new token and update C, M 
24.     Tokenize (F, e, C, M)     
25.    // if e doesn’t match the predicted or the prediction is exhausted 
26.     if (!matches(e, v[i]) || i == v.len-1 ) { 
27.        // predict the next token (i.e., a subsequence) 
28.        v = M.predict ( C[C.cursor : C.len] ) 
29.        C.cursor = C.len 
30.        i=0 
31.     }    
32.     else { // no prediction needed 
33.        i ++  
34.     } 
35.     if (n == L){ 
36.         // compress the tokenized sequence seen so far,   
37.         // update tokenzied sequence and return new tokens V_ 
38.         V_ = PartialCompress(C)  
39.         M.train (C) // update the predictive model M 
40.         F.update (V_) // update the tokenizer with the new words 
41.         V.append (V_)  // update the vocabulary  
42.         C = [] 
43.         n = 0 
44.    } 
45. }

Fig. 2. Algorithm of compressed learning for online inference and optional
model refinement.

that M can easily rollback its hidden state to the state it had
at the new cursor position.

2) Prediction when necessary: After getting the new token,
the algorithm (line 26 in Figure 2) checks whether it is time to
make a prediction. There are two cases when a new prediction
happens: (a) the predicted event for this time point does not
match the newly arrived event, which indicates a prediction
error; (b) the predicted sequence ends at this time point. In
other cases where the prediction is correct so far and the next
event is already covered by the recent prediction, there is no
need to make a new prediction.

3) Model refinement: Compressed learning supports contin-
uous model refinement. After a certain interval, the algorithm
refines the predictive model with the compressed sequence of
that interval, as lines 35 to 44 in Figure 2 shows.

Partial compression (solution to Issue-2). The learning
starts with compressing the new subsequences in C. A basic
design is to run Sequitur on the entire sequence C. But as the
tokenizations already compress some parts of the sequence,

1. // Recognize the new token that has e as the final element 
2. // and update tokenized sequence C with the new token 
3. Function  Tokenize (F, e, C, M){ 
4.   lastToken = C.getLast(); // get the last token in C 
5.   newToken = F.recognize(e);  // recognize the token 
6.   if  (newToken.len > 1) { // cover more than a single event 
7.       // replace the ending tokens in C with newToken 
8.       if (C.cursor > C.len-1) { // rollback is needed 
9.          // rollback hidden state of M and update cursor in C   
10.          M.rollBack(C.cursor-C.len) 
11.          C.cursor=C.len-1 
12.      }  
13.   } 
14.   else { 
15.       C.append(newToken) 
16.   }

Fig. 3. Algorithm of tokenization for online inference.

subroutine PartialCompress (line 38) compresses only the
uncompressed parts which could save compression time. The
subroutine first extracts out all the new subsequences in C that
do not match non-terminal tokens. In Figure 1(c), there are
three such subsequences, “x”, “ababdayabf”, “g” (“S” is the
start marker, hence not included). Rather than running Sequitur
on each of them, our design is to concatenate them together
such that one run of Sequitur would suffice. It is important to
notice that simple concatenation can cause wrong compression
results, as the subsequences are not actually consecutive but
Sequitur could be misled by the concatenated sequence to
group the end of a subsequence and the start of another
subsequence into one token. To avoid the issue, we insert
distinctive symbols at the end of a subsequence as separators,
as illustrated by the triangles in the “Refine Model” row in
Figure 1(c).

Accuracy-Conscious Lowering (solution to Issue-3).
Lowering is an important step for striking a good tradeoff
between token granularity and frequency. It, from the CFG,
derives a compressed sequence friendly to RNN training
(both offline and online). It recursively conducts a depth-first
expansion of tokens in an input compressed sequence (s). If a
token’s frequency is no smaller than a threshold (FREQ), the
subroutine stops expanding it, and puts it into the vocabulary
as a valid token. Such a design avoids unnecessary expansions
to keep the sequence as compact as possible while meeting the
frequency requirement.

The frequency threshold (FREQ) offers a knob to adjust
the tradeoff between the compression rate and the frequency
of tokens. In the extreme case where the frequency threshold
is too large, there will be no non-terminal symbols and our
algorithm becomes the same as default learning. In another ex-
treme case where the frequency threshold is too small, the data
sequence will be compressed into a very abstract format that
contains mainly less-frequent non-terminal symbols. Although
a highly compressed sequence may lead to less frequent hidden
state updates and yield larger speedups and prediction scopes,
it is not friendly for learning and could result in accuracy
degradation. During offline training, compressed learning uses
binary search to automatically find the suitable frequency



threshold that meets a user-specified accuracy requirement, as
detailed in Section IV.

D. Algorithm Analysis

In this part, we analyze the computational complexity of
compressed learning, and how rollbacks affect the efficiency.
The total time cost of predictions in compressed learning is
α · γ fraction of the cost of the default RNN inference on
the original sequence, where α = Nc/Nd and γ = Tc/Td,
Nc, Nd are the number of predictions conducted in compressed
learning and in default RNN inference, and Tc, Td are the
average times taken by one prediction in the two cases. The
time taken for one prediction is essentially the time to execute
recurrence function fW for updating the hidden state and
producing outputs.

We claim that α · γ must be no greater than one, even in
the presence of rollbacks. Formally, we have the following
propositions.

Proposition 1: Compressed learning, even with rollbacks,
does no more predictions than the number of input events–
that is, α <= 1.

Proof: The correctness is easy to see if we notice that
as Figure 2 shows, a rollback does not directly trigger a
prediction. Predictions are triggered only on line 27 of the
algorithm, which is executed at most once for a new event. �

Proposition 2: The total number of inputs to the predictive
model in compressed learning is no greater than the number
of input events– that is, γ <= 1.

Proof: The only time when the cursor moves backward is
at a rollback time. Notice that the movement is to put the
cursor right before the new token which is the token at end of
the compressed input. In effect, it just adds one token (i.e.,
the new token) into the set of inputs possibly sent to the
predictive model, as a response to the advent of the new event
that triggers the rollback. Therefore, even with rollbacks, the
number of inputs to the predictive model is no more than the
number of input events. �

As the default run of RNN takes in each input event and
makes one prediction per event, the two propositions entail that
even in the worst case, neither α nor γ would be greater than
one. In practice, because in compressed learning, predictions
are invoked only at some events (line 26 in Figure 2) and
the input to the model is compressed, α · γ is typically much
smaller than one, leading to a better prediction efficiency.

For the same reasons, the refinement of the predictive model
in compressed learning also costs no more than the default
given the same number of training epochs.

Compressed learning adds extra operations. They are pri-
marily tokenization, the recording of hidden states (for pos-
sible future rollbacks), and compression if optional model
refinement is enabled. Both tokenization and compression have
a linear time complexity in terms of the length of the input
sequence. As inference involves a number of matrix multi-
plications, the times these extra operations take are marginal
relative to the inference time savings, as Section IV will
show. Recording hidden states in memory does not take time

TABLE I
SEQUENCE STATISTICS. (EVERY SEQUENCE CONTAINS 500K EVENTS.)

Sequences Compression
ratio (X)

#non-terminal
symbols

token length stats
No. Name min mean max

1 fluid-calls 3759.4 6 4 1507.3 8192
2 go-calls 12.2 436 2 14.3 80
3 molecule-calls 96.0 155 2 78.2 1024
4 perl-calls 79.8 116 2 88.4 1880
5 ocean-calls 747.4 27 2 293.7 2194
6 waves-calls 2066.1 16 2 1051.1 8192
7 fluid-mem 2487.6 8 2 1128.9 5120
8 go-mem 86.2 30 2 339.8 3216
9 molecule-mem 4.3 980 2 10.6 85

10 ocean-mem 5.0 916 2 11.7 71
11 perl-mem 13.4 216 2 36.0 577
12 waves-mem 3.5 29 2 16.4 88
13 windows-log1 28.7 213 2 53.3 914
14 windows-log2 29.7 269 2 34.3 469
15 thunderbird-log1 17.0 403 2 22.1 2048
16 thunderbird-log2 20.9 428 2 17.1 1536

∗ The frequency threshold in the lowering step is set to 5 when the reported
statistics are collected. token length stats consider only non-terminals in the
compressed seq; a token is a sequence of events. X-calls: function call seq.;
X-mem: memory address traces; X-log: system logs.

TABLE II
THE APPLICATIONS AND SYSTEMS ON WHICH TRACES ARE OBTAINED.

Name KLOC Description

fluid [21] 1 A dynamic fluid simulation algorithm
using Lattice Boltzmann Method.

go [22] 21 A go playing engine using
Monte Carlo tree search.

molecule [23] 24 A molecular modeling application.
ocean [24] 210 A regional ocean modeling algorithm.
perl [25] 362 Perl interpreter.
wave [26] 1 A 3D wave modeling algorithm.

windows [27] N/A Windows 7 event log that keeps track
of package installation and updates.

thunderbird [27] N/A

Thunderbird supercomputer log
that contains alert and non-alert
messages. Used for alert detection and
prediction research [28].

as they are already created in memory, but consumes space.
The number of hidden states needed to record is bounded by
m = min(L,K), where L is the length of a learning interval,
and K is the length of the longest token in the vocabulary.
If m exceeds memory budget, the implementation can limit it
to fit the memory budget, and accordingly, limit rollbacks to
tokens shorter than m.

IV. EVALUATION

We conducted a set of experiments to examine the efficacy
of the proposed technique, trying to answer the following
questions: (1) How much benefit can we get from compressed
learning for inference speed and prediction scope? (2) How
does compressed learning affect the model quality? (3) What
is the runtime overhead of incremental tokenization for on-
line inference and the partial compression for online model
refinement?



A. Methodology

Datasets. When collecting traces for the experiments, in order
to get a comprehensive assessment of the technique, we try to
ensure that the traces (i) come from the real-world workloads
or systems; (ii) exhibit a spectrum of regularities; (iii) cover
several different types of events and domains.

Table I lists the sixteen traces we experiment with. They
are of three types: The first six are function call sequences,
the second six are memory address traces (in 64-byte data
blocks), and the final four are system log traces. Prediction on
these sequences can help guide just-in-time optimizations [29],
prefetching [30]–[32], and system anomaly detection [33].

The system log traces come from LogHub [27]; they
are real-world system traces of Microsoft Windows OS and
Thunderbird Linux Cluster from Sandia National Lab. Fol-
lowing prior works in log parsing [7], [27], we replaced date,
timestamp, package specs, and parameter values in each log
entry as a dummy string to convert the unstructured free-text
log entries into a sequence of log keys. Each event is a log
key, which is also known as message type. The other traces
were collected through Intel instrumentation tool (Pin [34])
on six real-world applications. Table II lists those applications
and the sources. These applications are from various domains,
from fluid dynamics to programming language interpreters
and stochastic modeling. The regularity of the behaviors of
those applications also varies significantly. Program fluid,
for instance, is very regular; the core of it is structured linear
algebra. Program go, on the other hand, as a stochastic tree
search through Monte Carlo (random walk), is inherently
random. Such a collection allows the experiments to check
whether the compressed learning can discover and effectively
leverage the repetitive patterns in a trace, and at the same
time, avoid negative impact (slowdown, accuracy loss) if it is
applied to trace the lack of such regular patterns.

Table I also shows the sequence statistics. Each sequence
contains 500,000 events. The interval size is 50,000, so one
sequence consists of a total of 10 intervals. For each sequence,
we use the first five intervals for model training and the
rest for model testing (e.g., online prediction). Continuous
model refinement is disabled by default. If it is enabled, the
learning on a subsequence happens after the prediction on that
subsequence is done.

Counterparts for comparisons. Since CFG-guided com-
pressed learning is generally applicable to domains whose se-
quences have repetitive patterns, we use standard RNN-based
sequence modeling used in these domains as our baselines.
Specifically, we compare our compressed learning (denoted
as ours) with the following two default approaches.

(1) Default learning with 1-event prediction (default-1). This
method trains the RNN using the un-compressed sequence
and predicts only the next single event at one prediction. The
number of predictions it has to make is the same as the number
of events in a test sequence. All the prior works on applying
RNNs to program trace analysis [3]–[5], [35] and system log
analysis [7] use this strategy.

(2) Default learning with k-event prediction (default-k). This
method also trains the RNN using the un-compressed sequence
but has the same prediction scope as our compressed learning
has. That is, after it predicts an event, it feeds the prediction
to the RNN to make another prediction, and continues doing
that until the next k events are predicted, where k is the
average length of a prediction in our compressed learning.
So unlike our compressed learning, default-k predicts the next
k events by making k consecutive predictions rather than one
prediction; it hence saves no prediction time.

Models. The RNN model used in the experiments of all the
methods is the same. It consists of an embedding layer with an
embedding dimension of 256, a GRU layer with 1024 units,
and a fully-connected output layer. We train an RNN model
for each sequence. For offline training, the RNN models are
trained with ADAM [36] using an input length of 100 for
all methods. If online training is enabled, the models are
refined for one epoch on each interval (i.e., 50,000-length
event sequence) with an input length of 100.

Hyperparameters. Compared to default RNN training, the
only extra hyperparameter introduced by compressed learning
is the frequency threshold (FREQ) used in the lowering step.
We used binary search to determine the best FREQ that meets
a user-specified accuracy requirement while achieving good
inference speedups. Specifically, we allow users to specify
a tolerable accuracy drop (e.g., 1%) compared to default-1.
We use the first 4 training intervals for RNN training and
the remaining 1 training interval for validation. We increase
FREQ to lower the compression rate in exchange for better
model quality or decrease it for a higher speedup. To reduce
the overhead of binary search, the options of FREQ are
currently limited to 14 values: 2, 5, 10, 20, 50, 100, 200, 500,
1000, 2000, 5000, 10000, 20000, and 50000. When FREQ
reaches 50,000 which is the interval size, the sequence is not
compressed and compressed learning falls back to default-1
so that the same accuracy is guaranteed. If one changes the
interval length, the list of options can be adjusted accordingly.

Metrics. Our evaluation uses the following three metrics. (i)
The speedup over the inference time (i.e., averaged time spent
on predicting the next event) taken by default-1 when all
runtime overhead (e.g., tokenization, rollback) is counted in.
(ii) The prediction scope, which is the average length of a
prediction. (iii) The prediction accuracy, which is the ratio
between the # of correctly predicted events over the total
number of events.

Platform and hardware. All the experiments are performed
with TensorFlow 2.2 on computing nodes equipped with a
12-core 2.40GHz Intel Xeon E5-2620 v3 processor, 256GB
of RAM, 256GB SSD and 4 NVIDIA TITAN X GPUs. For
each experiment a memory limit of 60GB and a limit of 1
GPU usage was set. CUDA version is 10.1. Source code is
available anonymously: shorturl.at/imuDR.



TABLE III
ONLINE PREDICTION RESULTS OF COMPRESSED LEARNING AND ITS COMPARISON WITH DEFAULT APPROACHES THAT USE UNCOMPRESSED SEQUENCES.

Sequences spec. acc.
drop FREQ

avg. pred
length #predictions #rollbacks tokenization

overhead (%)
avg. latency∗ (ms) prediction

speedup (×)
event accuracy (%)

ours default-1 ours default-k default-1

fluid-calls 0% 2 7830 35 0 0.20680 0.036 4.340 120.9 99.9984 99.9984 99.99841% 2 7830 35 0 0.20680 0.036 120.9 99.9984 99.9984

perl-calls 0% 50 31 8916 522 0.00017 0.132 3.701 28.1 99.74 98.54 99.891% 5 133 7372 1180 0.00018 0.082 45.3 99.57 98.59

molecule-calls 0% 50 30 8572 722 0.00044 0.179 3.582 20.0 99.67 95.86 99.61% 5 91 4393 1099 0.00287 0.071 50.5 99.5 77.37

ocean-calls 0% 500 17 14677 191 0.00007 0.209 3.726 17.9 99.89 99.51 99.951% 5 200 5136 725 0.00282 0.084 44.5 98.94 44.59

wave-calls 0% 20 4798 4070 21 0.00616 0.246 3.707 15.1 83.74 83.76 83.761% 20 4798 4070 21 0.00616 0.246 15.1 83.74 83.76

go-calls 0% 20000 1 248732 2132 0.00001 3.608 3.608 1 87.4 87.59 87.591% 5000 2 229512 3767 0.00001 3.280 1.1 86.68 70.47

fluid-mem 0% 5 2500 100 0 0.05676 0.002 3.551 1762 99.96 89.53 99.971% 5 2500 100 0 0.05676 0.002 1762 99.96 89.53

go-mem 0% 5 78 3336 55 0.00001 0.054 3.611 66.4 98.82 91.49 99.041% 5 78 3336 55 0.00002 0.054 66.4 98.82 91.49

perl-mem 0% 20 81 6273 105 0.00014 0.086 3.630 42.2 99.48 98.52 98.741% 20 81 6273 105 0.00014 0.086 42.2 99.48 98.52

ocean-mem 0% 20 4 83383 3640 0.00002 1.478 3.954 2.7 81.63 75.93 81.31% 5 6 78782 1166 0.00004 1.236 3.2 80.69 72.37

wave-mem 0% 500 2 193050 1902 0.00001 3.084 3.700 1.2 79.32 64.71 79.561% 5 5 85957 1416 0.00001 1.233 3 79.1 50.71

molecule-mem 0% 2000 1 250000 0 0.00001 3.625 3.625 1 93.3 93.36 93.361% 1000 2 210869 1495 0.00000 3.296 1.1 92.05 73.69

windows-log1 0% 200 11 40930 3768 0.00004 0.605 3.750 6.2 95.13 88.91 95.911% 20 31 24391 6996 0.00017 0.364 10.3 93.25 79.54

windows-log2 0% 100 14 38781 4636 0.00005 0.716 4.009 5.6 95.37 90.62 96.491% 20 23 29882 9836 0.00012 0.617 6.5 95.08 91.81

thunderbird-log1 0% 1000 3 109977 4580 0.00011 1.521 4.014 2.6 93.91 94.02 94.021% 200 10 40933 2445 0.00026 0.628 6.4 92.37 84.93

thunderbird-log2 0% 20000 1 250000 0 0.00001 3.531 3.531 1 92.45 92.52 92.521% 1000 2 135229 11498 0.00007 1.962 1.8 91.04 83.53
*avg. latency: averaged time spent on predicting the next event. default-1 and default-k have the same avg. latency.

B. Results

Table III reports the online prediction results of compressed
learning and its comparison with the two default approaches.
The user-specified tolerable accuracy drops are 0% and 1%,
with respect to default-1. The results are averaged over five
runs with different random seeds. Standard deviation of event
accuracy varies from zero to 1.9%.

Table III shows the clear benefits from our compressed
learning on both prediction scope and speed. The predic-
tion scope increases from one in default-1 to hundreds or
even thousands of events (as the “avg. pred length” column
shows), and the inference time decreases by up to three orders
of magnitude (as the “prediction speedup” column shows).
Getting benefits on both aspects at the same time shall be
no surprise. The larger prediction scopes entail the need for
fewer predictions, and hence the much-reduced prediction
time. As Figure 4 illustrates, for the part of the call sequence of
perl with regular repetitive patterns, the RNN in compressed
learning can recognize the patterns and makes predictions
much less frequently.

In comparison, when the default method extends its pre-
diction scope to the same as the compressed learning has,
significant accuracy loss appears (e.g., 54% accuracy loss on
ocean-calls), as the “default-k” column shows. Moreover,
as Section IV-A has mentioned, to predict k events, default-k

still needs to make k predictions; so it saves no prediction
time at all.

The exact amount of speedups by compressed learning
varies from sequence to sequence, depending on how often
repetitive patterns show up in the sequence, which is intuitive.
What is satisfying is that for traces with regular patterns, com-
pressed learning can indeed tap into the potential, effectively
recognizing the patterns and translating them into dramatic
speedups, as typified by the results on the traces of fluid.
On the other hand, on irregular traces, the method can still
achieve the target accuracy while causing no slowdowns, as
shown by the function call sequence of go, the random tree
search application.

The effectiveness of the technique holds across domains
and sequence types. The benefits are more pronounced on
function call and memory traces than on system logs, due to
the less regularity in the system logs. But it is worth noting that
even on system logs, the benefits are still significant, 1–10.3×
speedups of inference and up to 31× larger prediction scopes.
To achieve the same prediction scopes, default-k suffers up to
16% accuracy drops while giving no speedups.
Runtime overhead of online tokenization. The myopic na-
ture of online tokenization incurs a number of rollbacks in
compressed learning for most sequences, as the “#rollbacks”
column in Table III shows. But as Section III-D has proved,



Fig. 4. (a) The function call sequence from perl and (b) predictions made
by the RNN trained with compressed learning.

rollbacks do not cause extra invocations of predictions. The
time overhead of a rollback consists of only the switch of one
single reference (to point to an earlier data block that holds
the recent hidden state of the RNN), which is negligible. That
explains the significant speedups despite the many rollbacks
in compressed learning.

The other source of runtime overhead is the time spent on
tokenization for online prediction. The results are listed in
column “tokenization overhead (%)” of Table III. Overall, this
tokenization overhead is negligible, less than 0.2% compared
to the total amount of prediction time (the time spent on the
RNN model plus online tokenization) for all sequences.

Runtime overhead of partial compression. In another ex-
periment, we turned on continual model refinement, for all
the three methods in comparison. We did not see noticeable
changes in the prediction results (accuracy, speedup, scope).
The reason is that the one-epoch retraining is not enough to
create some notable improvement of the model quality on
these traces. The refinement incurs extra runtime overhead for
compressed learning, as it needs to do the partial compression.

Table IV reports the time overhead of partial compression
and also the speedups of our compressed learning on the one-
epoch training compared to default approaches (default). For
compressed learning, we used the FREQ that corresponds to a
specified accuracy drop of 1%. default refers to both default-
1 and default-k because they use the same training strategy
(e.g., train on uncompressed sequences) and thus require the
same amount of training time. Overall, the time overhead of
partial compression is minimal, taking up to 6.08% of the total
model refinement time (including the time spent on partial
compression). Increasing the number of epochs for model
refinement will further reduce the percentage of compression
overhead. As a side effect of compression, continual model
refinement on compressed sequences for one epoch is up to
39.4× faster than default approaches.

V. RELATED WORK

Deep learning on compressed inputs. There are some studies
on deep neural network (DNN) training and inference with
compressed input data, but all on images and convolutional
neural network (CNN) [37]–[41]. In Natural Language Pro-
cessing (NLP), the representation of inputs sometimes uses
some tokens to represent some common phrases. An example

TABLE IV
RUNTIME OVERHEAD OF CONTINUAL MODEL REFINEMENT.

Sequences compression
overhead (%)

refinement
speedup (×)No. Name

1 fluid-calls 0.03 22.1
2 go-calls 4.35 1.2
3 molecule-calls 0.06 5.4
4 perl-calls 0.02 11
5 ocean-calls 0.03 7.8
6 waves-calls 2.04 21.5
7 fluid-mem 0.1 39.4
8 go-mem 0.16 7.6
9 molecule-mem 6.08 1.8

10 ocean-mem 0.96 4.4
11 perl-mem 1.29 5.9
12 waves-mem 2.12 5
13 windows-log1 0.01 5.6
14 windows-log2 0.01 5.9
15 thunderbird-log1 0.02 3.4
16 thunderbird-log2 0.03 1.7

* Each RNN model is refined for one epoch for both default-1 and compressed
learning.

is Byte Pair Encoding (BPE) [42] used in subword tokeniza-
tion. These representations are at the word or phrase level,
offering no systematic ways to identify patterns in a long
sequence of events and code them concisely. Moreover, as
those studies work on separate sentences instead of continuous
event streams, rather than online tokenizing inputs continu-
ously, they use a preprocessing step to first tokenize the entire
sentence before feeding it to the DNN. They are not applicable
to streaming event sequences. To the best of our knowledge,
this work gives the first proposal of compressed learning for
RNNs on streaming event sequences.

DNNs for program traces. Some recent works have proposed
applying DNNs on program traces for program behavior
prediction. A study [4] uses an offline attention-based LSTM
model to provide insights for designing a simple online
hardware cache replacement policy. Perceptron-based Prefetch
Filtering (PPF) [43] enhances the existing state-of-the-art
prefetchers by observing the stream of candidate prefetches
generated by a prefetcher, and then rejects those that are
predicted by the online-trained neural model to be inaccurate.
Another study [3] applies sequence learning to prefetching and
proposes using LSTM to understand the semantic information
of the underlying application given a memory access trace. A
recent work [5] proposes an RNN-based page scheduler for
programs that execute over hybrid memory systems. None of
them have considered learning from the compressed traces.

DNNs for system logs. System logs record detailed soft-
ware runtime information which allows software developers
to track and analyze system behaviors. Recent years have
seen a growing interest in applying Deep Learning models
in analyzing system logs. One study [7] proposes Deeplog,
which leverages LSTM for online anomaly detection. Another
work [44] proposes to use RNN with the attention mechanism
for anomaly detection. Some other work [6] builds an RNN-
based content caching framework to predict the popularity of
content objects on information-content networks. Wang and



others [45] used RNNs to predict the probability that a user
will access a particular activity given their historical access
logs. No prior work has proposed learning from compressed
log sequences.

Sequitur [17] has been applied to various tasks, including
program and data pattern analysis [46]–[48]. It has not been
introduced into RNN learning before.

VI. CONCLUSION

This paper presents CFG-guided compressed learning, the
first known approach to integrating sequence compression into
RNN learning and inference for both expanded prediction
scope and reduced inference latency. It builds on CFG and
online tokenization, and addresses a series of complexities
through the design of efficient rollback, accuracy-conscious
lowering, partial compression, and other techniques. By dis-
covering and leveraging patterns in a sequence effectively, it
enables much faster inferences while achieving a substantially
expanded prediction scope on 16 real-world sequences with
repetitive patterns. Future work includes generalizing com-
pressed learning to other autoregressive models and recent
architectures such as Transformers.
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