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Abstract
AI-powered applications often involve multiple deep neural
network (DNN)-based prediction tasks to support application-
level functionalities. However, executing multi-DNNs can be
challenging due to the high resource demands and computa-
tion costs that increase linearly with the number of DNNs.
Multi-task learning (MTL) addresses this problem by design-
ing a multi-task model that shares parameters across tasks
based on a single backbone DNN. This paper explores an al-
ternative approach called model fusion: rather than training
a single multi-task model from scratch as MTL does, model
fusion fuses multiple task-specific DNNs that are pre-trained
separately and can have heterogeneous architectures into
a single multi-task model. We materialize model fusion in
a software framework called GMorph to accelerate multi-
DNN inference while maintaining task accuracy. GMorph
features three main technical contributions: graph mutations
to fuse multi-DNNs into resource-efficient multi-task models,
search-space sampling algorithms, and predictive filtering
to reduce the high search costs. Our experiments show that
GMorph can outperform MTL baselines and reduce the in-
ference latency of multi-DNNs by 1.1-3× while meeting the
target task accuracy.

CCS Concepts: • Computing methodologies→ Neural
networks.
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1 Introduction
Deep learning has had a profound impact on the field of
artificial intelligence (AI) by enabling machines to make
highly accurate predictions. As deep learning becomes in-
creasingly prevalent in tackling various prediction tasks,
modern AI-powered applications such as home robots, aug-
mented reality, and self-driving cars require the execution of
multiple deep neural networks (DNNs) to support complex
application-level functionalities that involve several related
prediction tasks.

Executing multi-DNN inference on resource-constrained
devices can be challenging due to the high computation costs
of DNNs. Model compression techniques [11, 25, 27, 35] can
improve the efficiency of single DNNs. However, the cost of
using a separate DNN for each task still increases linearly
with the number of DNNs involved, as existing compression
techniques cannot leverage commonalities across tasks.

Multi-task learning (MTL) addresses this problem by shar-
ing the parameters of a single backbone DNN across multiple
tasks [6]. Traditional deep MTL approaches [9, 39, 44, 46, 49,
54, 60, 62, 78] manually designmulti-taskmodels with shared
parameters, but this can lead to dramatic accuracy loss due to
improper feature sharing. More recent work [58, 59, 76, 77]
automatically searches for how to share parameters across
tasks in the backbone DNN to minimize accuracy loss.
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This paper explores an alternative approach: rather than
training a single multi-task model from scratch, we propose
fusing multiple task-specific DNNs, which are pre-trained sep-
arately and can have heterogeneous architectures with no
shared backbone, into a single multi-task model. This ap-
proach, which we call model fusion, is more flexible and
easily applicable than MTL because it can fuse any set of
pre-trained task-specific models. Furthermore, MTL usually
requires a training dataset with labels for each of the tasks
of interest, which can be costly to obtain since it is more
common to develop task-specific datasets. Model fusion does
not have this requirement because it leverages the outputs
of the pre-trained DNNs as ground truth. Besides ease of
use, our evaluation shows that our model fusion approach
outperforms the state-of-the-art MTL approach in terms of
inference time and accuracy.
We propose GMorph, a model fusion framework aimed

at accelerating multi-DNN inference while maintaining task
accuracy. GMorph targets applications where multiple tasks
operate on the same data stream, which is a common sce-
nario [47, 71]. For instance, home robotics and augmented
reality applications leverage DNNs to perform tasks such as
image classification, object detection, semantic segmentation,
and face detection on the input vision stream to understand
the environment and analyze user behaviors [38, 40].
GMorph explores opportunities for fusing multiple in-

dependent task-specific DNNs. It is based on the observa-
tion that a DNN is a sequence of computation blocks, such
as residual blocks in ResNets [65] or convolution layers in
VGGs [57]. A computation block produces tensors, also called
intermediate features, that are consumed by subsequent com-
putation blocks. GMorph automatically explores intermediate
feature sharing opportunities where the input features of a
computation block of one DNN can be re-used as inputs of a
block of another DNN. To enable feature sharing, GMorph
fuses the two DNNs into a multi-task model so that shared
features are computed only once, leading to significant com-
putation savings.
To identify a multi-task model that meets a given task

accuracy requirement while having a low inference cost,
GMorph employs two main components: mutation optimiza-
tion and performance estimation. The former generates multi-
task model candidates by mutating input DNNs to allow for
feature sharing across DNNs with different architectures.
The latter filters out non-promising multi-task models and
fine-tunes the remaining ones to evaluate their task accuracy.
GMorph fine-tunes multi-task models using outputs from
the well-trained task-specific DNNs through knowledge dis-
tillation [24], eliminating the need for task labels.

GMorphmakes threemain technical contributions to tackle
the new model fusion problem. First, it introduces a novel
technique called graph mutation to fuse multiple DNNs into

more resource-efficient multi-task models. GMorph repre-
sents multiple DNNs as an abstract graph, a novel data struc-
ture designed to encode the search space ofmulti-taskmodels
and facilitate graph mutation. It then incrementally gener-
ates mutations of the graph that share more and more fea-
tures across DNN computation blocks using a set ofmutation
rules we introduce. We show empirically that sharing fea-
tures across computation blocks with similar input feature
shapes is more likely to preserve accuracy. Based on this
insight, GMorph only shares similar input features when
generating mutations.
The second technical contribution of GMorph is an algo-

rithm to efficiently explore the search space of multi-task
models. Exhaustively searching all possible sharing configu-
rations is impractical because the number of configurations
increases exponentially with the number of DNNs and their
computation blocks. To explore the search space efficiently,
we develop a simulated-annealing-based search-space sam-
pling algorithm that first generates multi-task models with
diverse sharing patterns and then gradually focuses onmutat-
ing promising candidates to further increase feature sharing
and reduce their inference costs. This approach is based on
the insight that a mutation of a previously evaluated promis-
ing candidate is more likely to achieve high efficiency and ac-
curacy. Furthermore, we can reuse the well-trained weights
of the promising candidate in their mutations, which reduces
the cost of fine-tuning. The resulting algorithm strikes a bal-
ance between exploration and exploitation.
Third, GMorph employs novel predictive filtering mecha-

nisms to reduce the high cost of accuracy evaluation. Fine-
tuningmodelmutations is necessary to recover task accuracy,
but it can be time-consuming. Predictive filtering addresses
this challenge by identifying and eliminating non-promising
mutations early in the process. We observe that if a mutation
cannot meet an accuracy requirement, mutations with more
aggressive feature sharing are also likely to fail, so we prune
them before fine-tuning. In addition, during fine-tuning, pre-
dictive filtering predicts whether the current mutation will
likely reach the target accuracy. If not, it terminates the
fine-tuning for that mutation.

We evaluate GMorph on seven benchmarks, each consist-
ing of two or three DNNs. Our results show that GMorph is
able to reduce the inference latency of the original models
on PyTorch [52] by 1.11-2.23×, without any accuracy drop.
When allowing for a maximum 2% accuracy drop, GMorph is
able to further reduce the inference latency by up to 3.06× on
PyTorch and 3.25× on TensorRT. These results demonstrate
that GMorph is a complementary optimization approach
to existing DNN compilers. Compared to using manually-
optimized baselines or TreeMTL [77], the state-of-the-art
MTL approach, model fusion does not suffer from significant
accuracy drops due to over-sharing or limited speedups due
to under-sharing.

Our major contributions are summarized as follows.
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• We propose model fusion, a new approach to speed
up multi-DNN inference. Given a set of separately
pre-trained task-specific models, model fusion auto-
matically generates an efficient multi-task model that
preserves the target accuracy.
• We propose a novel graph mutation technique to trans-
form multiple separate DNNs into more efficient multi-
task models that share features across DNNs. Graph
mutation builds on a novel data structure called ab-
stract graph that encodes the search space of feature
sharing and supports mutation rules.
• We design a simulated-annealing-based search-space
sampling policy to efficiently explore a vast space of
multi-task models. We also propose predictive filtering
to filter out unpromising candidates. These techniques
reduce the search cost by up to 68-90%.
• We implement these techniques in the GMorph soft-
ware framework. We evaluate GMorph to demonstrate
its effectiveness in accelerating multi-DNN inference
with no or only minor accuracy drops.

2 Motivations and Challenges
This section discusses the potential and challenges of cross-
DNN feature sharing to accelerate multi-DNN inference.

2.1 Motivation
Multi-DNN inference on the same input stream is quite com-
mon in various applications such as autonomous driving [74],
augmented reality [38], robotics [30], VR classroom [37], etc.
These scenarios have the potential to benefit from sharing
features across tasks. Table 1 lists three multi-task appli-
cations, Lifelogging and Vision Support from [40, 47] and
General Language Understanding from [45], and their tasks,
each using a separate task-specific DNN for prediction. Lifel-
ogging records and archives one’s daily life by detecting
objects and predicting the number of salient objects in the
scene using object detection and saliency prediction models.
Vision Support examines face images and executes multi-
DNNs that predict age, gender, ethnicity, and emotional ex-
pression. General Language Understanding consists of tasks
from the GLUE benchmark [66], which makes certain pre-
dictions given input sentences.
It is possible to share features between DNNs to reduce

their computation costs without compromising task accuracy.
For example, age and gender prediction could share low-
level features extracted from an input face image, instead of
having task-specific DNNs to compute these features from
scratch. To do so, we can allow a computation block of one
DNN to reuse the features computed by some computation
block of another DNN.
Figure 1 illustrates how model fusion impacts task ac-

curacy and inference speedups by sharing features across
DNNs. In Figure 1(a), three task-specific VGG-16s are utilized

Application Prediction tasks

Lifelogging

1. Object detection: Detecting various objects
present in an image
2. Saliency prediction: predicting the existence
and the number of salient objects in an image

Vision
Support

1. Age prediction: predicting the age of a person
from an input image
2. Gender prediction: predicting the gender of a
person from an image
3. Ethnicity prediction: predicting the ethnicity
of a person from an image
4. Emotion prediction: recognize the emotion on
a person’s face

General
Language
Understand

1. CoLA task: predicting whether an English
sentence is grammatically plausible
2. SST-2 task: determine whether the sentiment
of a sentence from movie reviews is positive
or negative

Table 1. Example applications and their DNN-based tasks.

in the vision support application to predict emotion, gen-
der, and ethnicity, respectively. In Figure 1(b), two ResNets
(ResNet-18 and ResNet-34) are utilized in the lifelogging
application to predict the objects and the saliency of each
object, respectively. In both sub-figures, we randomly select
a computation block of a DNN to share the features of some
randomly selected computation block of another DNN. If
there are three DNNs, we perform the action twice so that
all three models can have some feature sharing. To ensure
that the shared features are compatible, we apply re-scaling
to the dimensions of the tensors before they are reused by
a computation block of another DNN. We sample a total
of 400 multi-task models with different feature-sharing pat-
terns across DNNs and measure the inference speedups and
accuracy drops after fine-tuning. The inference speedup is
the ratio of time spent on executing the task-specific DNNs
and a multi-task model. The accuracy drop is the maximum
accuracy drop among the tasks. Detailed experiment settings
are provided in Section 6.
The results of Figure 1 show that model fusion by proper

feature sharing can achieve 1.1-1.4× inference speedups with-
out compromising task accuracy, and higher speedups can be
achieved if a minor accuracy drop is acceptable.Making the
right model fusion choices, however, is challenging. Sharing
the wrong features can result in significant accuracy drops,
which can be larger than 35%. We now discuss the challenges
of model fusion and these results in depth.

2.2 Challenges of Model Fusion
Model fusion requires identifying an optimal feature-sharing
configuration across DNNs that maximizes multi-DNN infer-
ence speedups while maintaining task accuracy. The problem
is challenging due to several factors, including the differences
in DNN weights and architectures, the large search space of
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Figure 1. Accuracy drop vs. inference speedups. Each point
is a well-trained multi-task model. Red represents shar-
ing between computation blocks with similar input shapes
while blue represents sharing with completely different in-
put shapes. The dotted line interpolates the red points.

possible multi-task models, and the high cost of evaluating
the accuracy of candidate multi-task models.

2.2.1 Challenge 1: Fusing Multiple Heterogeneous
DNNs without Accuracy Loss. Model fusion takes as in-
puts multiple task-specific DNNs that are developed and
trained independently. DNNs for different tasks can be het-
erogeneous and differ in their model weights and architec-
tures for various reasons: DNNs trained on data from differ-
ent tasks have distinct model weights; the best architecture
for one task may not be optimal for another [5]; smaller mod-
els are preferred for tasks with less training data to prevent
overfitting [14]; different tasks result in varied architectures
after optimizations such as model compression [3, 25, 27],
even when starting with the same architecture.

Sharing features across DNNs with different weights and
architectures is challenging because none of the computation
blocks in one DNN may produce identical features as those
of the other DNNs. Allowing any computation block of one
DNN to reuse features from another DNN could cause a
drop in task accuracy, which may not be avoidable even with
fine-tuning.
Insight. Our empirical study suggests that sharing fea-

tures between DNN computation blocks that consume fea-
tures of similar shapes is more likely to recover task accuracy
via fine-tuning compared to sharing features between com-
putation blocks with vastly different feature shapes. A similar
shape means that any or all of the width, height, and chan-
nel dimensions are the same. Figure 1 illustrates this finding.
The red points correspond to multi-task models resulting
from feature sharing between DNN computation blocks that
consume features of similar shapes. The blue points corre-
spond to feature sharing between computation blocks that
consume completely different feature shapes, i.e., none of the
dimensions are the same. The red points dominate the Pareto
frontier between accuracy drop and speedups. This obser-
vation motivates us to develop a graph mutation technique

that focuses on feature sharing between computation blocks
with similar input shapes. The formal problem definition is
detailed in Section 4.1.

2.2.2 Challenge 2: Exploring the Large Search Space.
Even after restricting feature sharing to similar input shapes,
the search space of possible feature-sharing configurations
grows exponentially with the number of DNNs and the num-
ber of computation blocks in each DNN. For example, in our
experiment using three VGG-16 models, we iterate over all
the possible mutations of themodels and findmore than 350K
multi-task model variants. These variants differ in which fea-
tures are shared between which pair of DNNs, leading to a
broad range of accuracy drops (e.g., 0%-17% in Figure 1 for
red points) and inference speedups.
Insight. Our insight to address this challenge is to effi-

ciently sample the configuration space by leveraging the
dependencies among multi-task model variants. Specifically,
we can mutate a promising multi-task model into another by
increasing the level of feature sharing. This gives two advan-
tages over mutating the original multi-DNNs. First, it is more
likely to result in a multi-task model that can achieve higher
speedups. Second, the new multi-task model mutations in-
herit the well-trained weights of the promising candidate
and thus need a much shorter fine-tuning time to recover
accuracy. Figure 2 illustrates the two benefits. The multi-
task models are derived from three VGG-13 that predict Age,
Gender and Ethnicity on the UTKface [79] dataset.

Based on this insight, we designed a simulated-annealing-
based search-space sampling policy to reduce the search cost.
The policy first explores the search space by mutating the
input multi-DNNs to generate diverse multi-task model vari-
ants and then exploits the search results by further mutating
satisfactory variants to identify more efficient solutions.
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Figure 2. Fine-tuning time vs. inference speedups. Each
point is a well-trained multi-task model mutated either from
original multi-DNNs (From original) or another promising
multi-task model candidate that meets the target accuracy
(From another). Mutations of promising candidates are more
likely to achieve higher speedups and require significantly
less fine-tuning time.

2.2.3 Challenge 3: The High Cost of Accuracy Eval-
uation. After mutating new multi-task model candidates,
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it is necessary to train them in order to estimate their accu-
racy. Mutations inherit their weights from another trained
candidate or input DNNs, so fine-tuning is sufficient. Fine-
tuning is faster than training from scratch but it is still time-
consuming, especially when evaluating a large number of
candidates. Unfortunately, predicting the task accuracy of a
candidate based only on the model architecture, without fine-
tuning, is not feasible. Two candidates with the same archi-
tecture may have different weight initialization, depending
on which multi-task model they are mutated from, resulting
in different task accuracy.
Figure 3 illustrates this problem. Each sub-figure consid-

ers a different multi-task model architecture. We train each
architecture with different weight initialization and measure
how this impacts the model accuracy compared to the input
task-specific DNNs. The multi-task models are derived from
two VGG-13s that predict Age and Gender on the UTKface
dataset, respectively. When considering 123 and 111 different
weight initializations, respectively, the accuracy drop varies
from −1% (accuracy increase) to 3%.
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Figure 3. Impact of different initialization configurations on
the accuracy drop of two model architectures.

Insight. To mitigate this problem, we develop predictive
filtering mechanisms based on two key observations. First,
we observe that a multi-task model that exhibits more ag-
gressive feature sharing than a non-promising one from pre-
vious trials is likely to be non-promising as well. As shown
by the interpolated dotted curve in Figure 1, the higher the
speedups achieved through feature sharing, the higher the
accuracy drops. This observation motivates us to design
filtering strategies that identify non-promising candidates
without undergoing the fine-tuning process based on the
accuracy of their counterparts with less aggressive feature
sharing. Second, the test accuracy of a DNN usually con-
verges to an asymptotic value as the number of iterations
increases. By using a sequence of test accuracies to estimate
the convergence rate and then extrapolating the learning
curve, we can approximate the final accuracy of a multi-
task model and predict whether the model has the potential
to reach the target accuracy. This enables us to terminate
non-promising candidates early.

Well-trained DNNs Optimization Config.

Model Parser

Graph Mutator

Graph Mutation

Model Generator

Abs-Graph & Weights
Trained
DNN

Accuracy Estimator

Latency Estimator

FLOPs Estimator

Predictive Filtering

Fine-tuning

Mutated Abs-Graph Trainable
DNN

Mutation Optimization Perf. Estimation

GMorph Framework

A well-trained efficient multi-task DNN

History

Figure 4. Overview of GraphMorph Framework

3 Overview of GMorph
This section gives an overview of GMorph. GMorph is a soft-
ware framework that automatically enables feature sharing
across DNNs to accelerate multi-DNN inference. As Figure 4
shows, its input has two parts:

• A set of well-trained DNNs, which in our current im-
plementation are stored in PyTorch checkpoint (.pt,
.pth) format. These DNNs consume the same input but
could have different weights and architecture.
• A configuration file for the graph mutation optimiza-
tion. The set of configurations includes (1) the metric
to be optimized (i.e., latency or FLOPS) and the accept-
able task accuracy threshold, (2) representative DNN
inputs formulti-taskmodel fine-tuning, (3) testing data
and scripts to evaluate task accuracy, (4) optimization
hyperparameters such as the learning rate for model
fine-tuning, the maximum fine-tuning epochs, and the
maximum rounds or time for the graph mutation opti-
mization.

The output is a well-trained multi-task model that is more
efficient in terms of the optimized metric (e.g., latency) while
meeting a user-specified task accuracy threshold. It is worth
noting that GMorph depends solely on representative in-
puts to fine-tune the multi-task model, thus eliminating the
requirement for training datasets with task labels.

The GMorph framework consists of twomain components,
as illustrated in Figure 4. The Mutation Optimization compo-
nent takes as input either the multi-DNNs provided by the
user or a well-trained multi-task DNN from the performance
estimation component. It generates a trainable multi-task
DNN with features sharing, which is then evaluated by the
Performance Estimation component to produce a well-trained
multi-task DNN. The well-trained multi-task DNN is sub-
sequently utilized in the mutation optimization in the next
round. Algorithm 1 outlines the graphmutation optimization
algorithm in GMorph.
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Algorithm 1 Graph Mutation Optimization
Require: 𝑇𝑎𝑐𝑐 ⊲ Threshold for accuracy drop.
Require: {𝐷𝑁𝑁𝑖 } ⊲ The set of input DNNs.
Require: 𝑁 ⊲ Total number of rounds.
1: G𝑖𝑛𝑝𝑢𝑡 .𝑔𝑟𝑎𝑝ℎ,G𝑖𝑛𝑝𝑢𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = parse({𝐷𝑁𝑁𝑖 })
2: 𝑒𝑙𝑖𝑡𝑒𝑠 ← ∅ ⊲ Initialize elite candidates.
3: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 ← ∅ ⊲ Initialize evaluated candidates.
4: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 ← {𝐷𝑁𝑁𝑖 } ⊲ Initialize the best model.
5: for 𝑖𝑡𝑒𝑟 = 1, 2, · · · , 𝑁 do
6: /* Step 1: sample a new candidate and mutate it. */
7: G𝑏𝑎𝑠𝑒 ← sampleBaseGraph(G𝑖𝑛𝑝𝑢𝑡 , 𝑒𝑙𝑖𝑡𝑒𝑠)
8: 𝑛𝑜𝑑𝑒_𝑝𝑎𝑖𝑟𝑠 ← sampleNodePairs(G𝑏𝑎𝑠𝑒 .𝑔𝑟𝑎𝑝ℎ)
9: G𝑚 .𝑔𝑟𝑎𝑝ℎ← mutate(G𝑏𝑎𝑠𝑒 .𝑔𝑟𝑎𝑝ℎ, 𝑛𝑜𝑑𝑒_𝑝𝑎𝑖𝑟𝑠)
10: 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒_𝑚𝑜𝑑𝑒𝑙 = generate(G𝑚 , G𝑏𝑎𝑠𝑒 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

⊲ Generate the trainable multi-task model; initialize the
model with well-trained weights from the base model.

11: /* Step 2: evaluate the multi-task model. */
12: 𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 ← 𝑒𝑣𝑎𝑙 (𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒_𝑚𝑜𝑑𝑒𝑙, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑)
13: G𝑚 .𝑔𝑟𝑎𝑝ℎ,G𝑚 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← parse(𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 )
14: if 𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 .𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 >= 𝑇𝑎𝑐𝑐 then
15: 𝑒𝑙𝑖𝑡𝑒𝑠 .add(G𝑚)
16: updateBestModel(𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 , 𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 )
17: end if
18: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 .add(G𝑚)
19: end for
20: return 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙

Mutation Optimization. Mutation optimization com-
prises three main modules executed in sequential order: (1)
TheModel Parser transforms the input multi-DNNs or a well-
trained multi-task DNN into an abstract graph and extracts
model weights (Lines 1 and 13). The abstract graph is the
core data structure for representing multi-DNNs and multi-
task DNNs to automate graph mutation optimization. (2) The
Graph Mutator saves abstract graphs and model weights in
its History Database. It then selects an abstract graph G𝑏𝑎𝑠𝑒
from the History Database and applies a graph mutation
pass on it to create a new abstract graph G𝑚 (Lines 7-9).
G𝑏𝑎𝑠𝑒 is called base abstract graph while G𝑚 is called mu-
tated abstract graph. The graph mutator uses a simulated
annealing-based sampling policy to select the abstract graph
and the mutation operations applied to it. (3) TheModel Gen-
erator materializes a trainable multi-task DNN based on the
mutated abstract graph and initializes its weights using the
well-trained weights of the base abstract graph (Line 10).

Performance Estimation. Performance estimation com-
putes several commonly-used performancemetrics including
latency, FLOPs, and accuracy (Line 12). The Latency Estimator
measures the inference time by executing the trainable DNN
on the targeted devices. The FLOPs Estimator counts the total
number of Floating-Point Operations. The Accuracy Estima-
tor is the most time-consuming estimator since it fine-tunes
the trainable DNN to check whether it can meet the target
accuracy threshold. To reduce the model fine-tuning costs,
the accuracy estimator uses predictive filtering to filter out

non-promising models as early as possible. Fine-tuning ad-
justs the weights of the multi-task model to generate output
features similar to those of the input multi-DNNs, thereby
eliminating the need for task labels.

We next explain in detail the two components in GMorph.

4 Mutation Optimization
This section first gives a formal definition of the abstract
graph data structure and the mutation optimization problem
and then elaborates on the modules.

4.1 Abstract Graph
An abstract graph is a data structure generated by the model
parser that represents multi-DNNs with the same input or
a multi-task model in a linearized format. Feature sharing
between two DNNs would lead to a tree-structured model
that consists of some shared computation blocks and two
branches after the shared computation blocks. Therefore,
an abstract graph represents each DNN as a sequence of
computation nodes and the multi-task model as a tree of
computation nodes to enable graph mutation optimization.

Definition 1 (Abstract Graph). An abstract graph (abs-graph)
is a tree variant of a Directed Acyclic Graph (DAG), G =

(V, E,D), where
• each node 𝑛 ∈ V is an operator (e.g., Conv2d, ReLU,
Linear, etc) or a block of operators (e.g., Residual Module
in ResNet) in a DNN that transforms input features to
output features,
• each edge 𝑒 ∈ E represents the data dependency between
two nodes,
• the root of the tree is a placeholder for the input tensor
shared by all the DNNs, and
• D is a feature shape dictionary that maps a specific
feature shape to the set of nodes in the abstract graph
that can take features of that shape as inputs.

Specifically, a node in an abs-graph is represented as a
tuple (task_id, op_id, op_type, input_shape, capacity, parent,
children). The task_id indicates which task or DNN the node
comes from. The op_id represents the order of the node in the
DNN based on a topological sort. The op_type is the operator
ormodule type (e.g., CONV or Linear) in the DNNmodel. The
input_shape stores the shape of the input features taken by
the node. The capacity indicates the number of parameters of
each node. The parent and children contain the node before
it and the nodes after it respectively.

Some nodes in the abstract graph cannot share input fea-
tures with other nodes without negatively affecting accuracy.
Recall that our empirical study in Section 2.2.1 suggests that
sharing features between DNN computation blocks that con-
sume features of similar shapes is more likely to recover task
accuracy via fine-tuning compared to vastly different feature
shapes. Based on the finding, graph mutation optimization
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focuses on feature sharing between nodes with similar input
feature shapes, which we refer to as input-shareable node
pairs.

Definition 2 (Input-Shareable Node Pairs). In an abstract
graph, two nodes 𝑛 and𝑚 are considered input-shareable if
they accept input features that have compatible shapes in at
least one dimension. If this condition is met, the two nodes can
form an input-shareable node pair, (𝑛,𝑚) indicating that𝑚
reuses 𝑛’s input features, or (𝑚,𝑛) indicating the opposite.

When a node𝑚 reuses another node 𝑛’s input features,
the part of the computation producing𝑚’s input features can
be removed, leading to computation savings. If nodes 𝑛 and
𝑚 have input features with different shapes, an additional
re-scale operator is inserted before node 𝑚. For convolu-
tional neural networks, this operator resizes the width and
height of the features using interpolation techniques and
adjusts the channel dimension using a 1x1 convolution layer.
For transformer-based models, the channel dimension cor-
responds to the token length (i.e., sequence length for text
inputs and number of patches for image inputs).

The abs-graph built from the input multi-DNNs defines a
configuration space for the graph mutation optimization. It
could have many input-shareable node pairs, each resulting
in different computation savings and effects on task accuracy.
Formally, we define the optimization as follows:

Definition 3 (Graph Mutation Optimization). Graph mu-
tation optimization aims to identify the best set of input-
shareable node pairs, {(𝑛𝑖 ,𝑚𝑖 )} from the abstract graph of
multi-DNNs, that optimizes inference efficiency while meeting
target task accuracy by making each pair share input features.

Exhaustively searching for the global optimal solution is
time-consuming. Instead, GMorph aims to identify a local
optimum under a time budget. To achieve the goal, Mutation
Optimization effectively samples the configuration space to
reduce the number of configurations to evaluate while Per-
formance Estimation efficiently measures the performance
of each sampled configuration. We next explain each mod-
ule in the Mutation Optimization component. Performance
Estimation is elaborated in Section 5.

4.2 Model Parser
The Model Parser converts a set of DNN models from the
user or a trained multi-task DNN from the Performance
Estimation component into an abs-graph and correspond-
ing weights. It allows GMorph to automatically support a
wide range of deep learning models as inputs. Its design
is motivated by the observation that common DNNs are a
sequence of computation blocks, such as residual blocks in
ResNet18 [28] and convolution blocks in VGG16 [57]. These
computation blocks are nodes in abs-graphs.

The parsing procedure is as follows. We trace the compu-
tation graph of input models where each basic operator (e.g.,

Conv2d, Linear, etc) is a node in an abs-graph. If an input
model consists of a sequence of customized modules (e.g.,
Residual Block), each module will be mapped into a node.
The weights of the DNNs are saved as key-value pairs, where
each key is the (task_id, op_id) of a node in the abs-graph
and the value is the parameters of the operator or the group
of operators. The abs-graph and weights later are passed and
stored into the History Database in the Graph Mutator.

4.3 Graph Mutator
Graph Mutator first samples an abs-graph as a base abs-
graph and a set of input-sharable node pairs from the base
abs-graph. It then makes each pair share the input tensor
by applying a graph mutation pass to produce a mutated
abs-graph. We next explain the sampling policy, mutation
operations, and the graph mutation pass.

4.3.1 Sampling Policy. The sampling policy uses a vari-
ant of the simulated annealing algorithm [61] to balance
between exploitation and exploration. During graph muta-
tion optimization, the sampling policy maintains a list of elite
candidates, which are the abs-graphs of multi-task models
after graph mutations and meet the accuracy requirement. It
also records the abs-graph of the user-provided input DNNs
(called the original abs-graph).

In each graph mutation optimization iteration, the sam-
pling policy takes an elite candidate as the base abs-graph
with a probability 𝑝 , or takes the original abs-graph with
a probability 1 − 𝑝 . It then randomly selects a set of input-
sharable node pairs from the base abs-graph to perform a
graph mutation pass (See Algorithm 1 Lines 7-8). The mu-
tated abs-graph is added to the elite candidate list if it meets
the target accuracy requirement, or dropped otherwise.
GMorph gradually prioritizes sampling from elite can-

didates over the original graph to improve sampling effec-
tiveness. In the early iterations of optimization, the policy
tends to take the original graph as the base abs-graph, to
explore more potential elite candidates that meet the accu-
racy constraint, whereas in the later iterations, the policy
tends to find base abs-graphs from the elite candidates. The
probability 𝑝 of sampling an elite candidate is updated as:

𝑝 =

(
1 − exp

(
− 1 − Δ
𝑇𝑐 ×𝑇𝑖

))
×
√︂

𝑁𝑐

𝑁𝑖

,

where Δ is the accuracy drop after finetuning, 𝑇𝑐 is the cur-
rent temperature, 𝑇𝑖 is the initial temperature, 𝑁𝑐 is the cur-
rent number of elite candidates, and 𝑁𝑖 is the max number
of elite candidates to record. Current temperature 𝑇𝑐 is up-
dated with𝑇𝑐 = 𝑇𝑖 ×𝛼𝑖𝑡𝑒𝑟 , where 𝛼 is a constant for reducing
temperature, and 𝑖𝑡𝑒𝑟 is the current number of iteration. In
our experiment, we set 𝛼 to 0.99, 𝑁𝑖 to 16, 𝑇𝑖 to 90.

4.3.2 Mutation Operations. Depending on each sampled
pair of input-shareable nodes, Graph Mutator selects one of
the five pre-defined mutation operations. Figure 5 illustrates
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Figure 5. Different mutation operations. Inside each panel,
the left graph is the part of a base abs-graph while the right
graph is the part of the mutated abs-graph after applying a
mutation operation.

the mutation operations, which fall into two types, in-branch
mutation ( 1○) and cross-branch mutation ( 2○ 3○ 4○ 5○).
In-branch mutation is applied when the pair of input-

shareable nodes reside in the same branch of the base abs-
graph and thus the nodes belong to the same task. In 1○,
in-branch mutation removes the nodes between the pair,
reducing the computation for the corresponding task.

Cross-branch mutation is applied when the pair of input-
shareable nodes lie at different branches of the abs-graph–
that is, the two nodes belong to different tasks. Given an
input-sharable node pair (𝑛,𝑚), the node 𝑛’ branch is the
host while the node𝑚’s branch is the guest. The mutation
operation will make the node𝑚 share the input tensor of 𝑛
and remove other nodes on the guest branch whose topolog-
ical order is lower𝑚. In Figure 5, the left branch in panels 2○
and 4○ is the host while the right branch in panels 3○ and
5○ is the host.
Cross-branch mutation can reduce computation costs in

two ways. First, it allows two tasks to share nodes whose or-
der is lower than the input-sharable nodes. In 2○ and 3○, the
first two nodes are shared across the two tasks. Second, for
an input-sharable node pair (𝑛,𝑚), when𝑚.𝑜𝑝_𝑖𝑑 > 𝑛.𝑜𝑝_𝑖𝑑 ,
then the node𝑚’s task uses less number of nodes after the
mutation, implying the potentially reduced computation cost
for the task. For example, in 4○, the total number of nodes
for the task on the right side (guest branch) is reduced from
4 (3 purple + 1 yellow) to 3 (2 blue + 1 yellow).

4.3.3 A Graph Mutation Pass. Given the sampled base
abs-graph and a sequence of input-sharable node pairs, a
graph mutation pass applies mutation operations to the base
abs-graph to produce a mutated abs-graph. Figure 6 illus-
trates a graph mutation pass that performs two mutation
operations. The first mutation operation makes the deep
yellow node in the middle branch share the input tensor of
the deep blue node in the left branch. The second mutation

Input

Host Guest

Inputp

Host Guest

Inputp

Host Guest

(a) (b) (c)

Figure 6. A graph mutation pass that performs two muta-
tion operations. (a) The base abs-graph has three branches
(left, middle, and right) corresponding to three tasks. (b) The
intermediate abs-graph. (c) The mutated abs-graph.

operation makes the deep purple node use the input tensor
of the deep yellow node from the middle branch.

4.4 Model Generator
The Model Generator converts a mutated abs-graph into a
multi-task model that is ready to fine-tune. It will fetch the
well-trained weights of the base abs-graph from the History
Database and use these weights to initialize the mutated abs-
graph. Each node of a mutated abs-graph will be mapped
back to a module of PyTorch.

5 Performance Estimation
The Performance Estimation component evaluates various
performance metrics of a multi-task model including the
FLOPs, latency, and accuracy. We focus on the accuracy
estimator as it is the most time-consuming module. The
accuracy estimator uses predictive filtering to reduce the fine-
tuning costs and distillation-based fine-tuning to address the
lack of task labels.

5.1 Predictive Filtering
We designed two predictive filtering approaches to reduce
the long fine-tuning time of multi-task models. The first ap-
proach rule-based filtering filters out trainable models that
are unlikely to meet the accuracy constraint before fine-
tuning. The second approach predictive early termination
predicts the final accuracy of the training model by extrap-
olating the learning curve and early terminating the fine-
tuning if the predicted accuracy is not promising.
Rule-based Filtering. The rule is based on the capacity

of a trainable multi-task model: when a mutated abs-graph
is trained and shown to be non-promising, then all mutated
abs-graphs that are more aggressive in feature sharing are
also non-promising. The capacity refers to the number of
weights. A mutated abs-graph is more aggressive if all the
following conditions are met: (1) it has fewer total capacities;
(2) it has fewer total capacities for each task; (3) It has fewer
task-specific capacities for each task; and (4) It has more
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shared capacities between tasks. During the graph mutation
optimization, GMorph extracts the capacity of each mutated
abs-graph in the Model Parser, and applies the rule in the
accuracy estimator. If the mutated abs-graph is more aggres-
sive compared with existing non-promising abs-graphs, it is
skipped without fine-tuning.

Predictive Early Termination.GMorph predicts whether
a training model is promising based on the convergence
rate [56]. Specifically, we measure the test accuracy once
every 𝑑𝑒𝑙𝑡𝑎 epochs. We use four sequentially measured test
accuracy (𝑓 (𝑥), 𝑓 (𝑥 + 𝛿), 𝑓 (𝑥 + 2𝛿), 𝑓 (𝑥 + 3𝛿)) to estimate a
convergence rate𝛼 , where 𝑥 is the 𝑥-th epoch. Based on𝛼 , we
can estimate the future test accuracy 𝑓 (𝑥 +4𝛿), 𝑓 (𝑥 +5𝛿), etc.
Iteratively, we can estimate the final accuracy after𝑇 epochs
𝑓 (𝑇 ). The formula for computing the rate of convergence is:

𝛼 =
log( |𝑓 (𝑥 + 2𝛿) − 𝑓 (𝑥 + 3𝛿) |) − log( |𝑓 (𝑥 + 𝛿) − 𝑓 (𝑥 + 2𝛿) |)

log( |𝑓 (𝑥 + 𝛿) − 𝑓 (𝑥 + 2𝛿) |) − log( |𝑓 (𝑥) − 𝑓 (𝑥 + 𝛿) |) ,

If the predicted test accuracy 𝑓 (𝑇 ) is not promising, we early
terminate the fine-tuning process. Otherwise, we fine-tune
the model for the next 𝛿 epochs and predict again until the
fine-tuning process ends.

5.2 Distillation-based Fine-Tuning
Fine-tuning the weights of a multi-task model is necessary to
recover its task accuracy. As it is common for tasks to have
their separate training data, there is no ground truth label
available for all tasks given each input data point. Inspired
by DNN knowledge distillation [29], GMorph fine-tunes a
multi-task model to produce similar output features as the
original task-specific DNNs, forgoing the need for task labels.
The optimization objective is the weighted sum of the ℓ1 loss
from all tasks, where each loss is the ℓ1 distance between
the multi-task model’s output features and the single-task
model’s output features. To reduce the fine-tuning time, we
set an early-stopping condition such that the fine-tuning
stops once the test accuracy meets the requirement.

6 Evaluation
We conduct a set of experiments to evaluate the efficacy of
model fusion using GMorph. Our experiments are designed
to answer the following major questions: 1) How much infer-
ence speedup we could get from GMorph given different task
accuracy targets? 2) How effective are the sampling policy
and the predictive filtering in reducing the search cost? We
first describe the experiment settings in Section 6.1, then
report our experiment results in Sections 6.2-6.5.

6.1 Experiment Settings
Tasks and Models.We adopt the tasks from the three ap-
plications described in Table 1. Table 2 lists the DNNs and
datasets per benchmark. The DNN models and the datasets
are used in previous work [18, 41, 42, 45, 47, 75]. B1/2/3 cor-
respond to Vision Support, B4/5/6 correspond to Lifelogging,

and B7 correspond to General Language Understanding. The
goal of B1-B2 is to show that GMorph can achieve better
performance compared to MTL even with DNNs with the
same architecture. B3-B5 test the support of GMorph for
convolution-based DNNs with heterogeneous architectures.
In particular, B5 considers DNN models from different fami-
lies. B6-B7 test the performance of GMorph on transformer
models [13, 16] trained on vision and NLP tasks, which have
different numbers of layers and hidden sizes.
B1 uses the UTKFace [79] dataset, which consists of im-

ages with annotations of age, gender, and ethnicity. B2 and
B3 use the FER2013 [23] dataset for EmotionNet and the
Adience [17] dataset for AgeNet and GenderNet. B4/5/6
use PASCAL VOC2007 [18] for ObjectNet and SOS [75] for
SalientNet. B7 uses CoLA and SST-2 datasets from the GLUE
benchmark[66]. The detailed information on the datasets
and the accuracy of each task evaluated on the datasets are
reported in Appendix A.

Benchmark Tasks and Models
B1 AgeNet: VGG-13; GenderNet: VGG-13; EthnicityNet: VGG-13
B2 EmotionNet: VGG-16; AgeNet: VGG16; GenderNet: VGG-16
B3 EmotionNet: VGG-13; AgeNet: VGG16; GenderNet: VGG-11
B4 ObjectNet: ResNet-34; SalientNet: ResNet-18
B5 ObjectNet: ResNet-34; SalientNet: VGG-16
B6 ObjectNet: ViTLarge; SalientNet: ViTBase
B7 CoLANet: BERTLarge; SSTNet: BERTBase

Table 2. Tasks and Models.

Optimization Parameters. We set the configuration file
for GMorph as follows. (1) We set inference latency as the
metric to optimize. For B1/2/3, the accuracy metric is the
classification accuracy, while for B4/5/6, the accuracy metric
is mean average precision (mAP). In B7, the accuracy metric
for CoLANet is Matthews correlation coefficient while for
SSTNet is the classification accuracy. (2) The representative
input data is sampled from all the datasets in a benchmark,
with a size of 20K (10K for B4 to B7). (3) We use the same
testing data split to evaluate the multi-task model’s quality.
(4) For each generated mutated graph in B1, B4, and B5, the
number of epochs for fine-tuning is 35, with a batch size of
64; for those in B2 and B3, the number of epochs is 40, with
a batch size of 128; in B6 and B7, the number of epochs is 16
with a batch size of 32. The validation accuracy is measured
every 5 epochs for B1-B5 and every 2 epochs for B6-B7. We
use the adam optimizer [36].

The initial learning rate for fine-tuning a multi-task model
is the same as the initial learning rate to train the input
DNNs. If the input DNNs are trained with different learning
rates, then we use the minimum between all the models. The
detailed learning rate settings are reported in Appendix A.
Early-stopping condition is enabled for all the baselines. We
use three task accuracy targets corresponding to accuracy
drop thresholds of 0%, 1%, and 2%. The graph mutation opti-
mization uses a total number of 200 iterations.
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Baselines for Comparison.We compare GMorph with
the following baselines.

• Original. The input DNNs given to GMorph without
any feature sharing. The models are rewritten as one
computation graph where tasks share the input tensor.
• All-shared. This is the most commonly used multi-
task architecture where all identical layers are shared
across tasks [54]. When DNNs are of different archi-
tectures, they bring no (or limited) speedups because
there are no (or a limited number of) identical layers.
• TreeMTL. This is the state-of-the-art multi-task learn-
ing (MTL) approach [77] that automatically generates
efficient multi-task models with high accuracy. MTL
requires that each input has task labels of all the tasks.
However, since there is no such large-scale dataset
for benchmarks B2-B7, we use the distillation-based
fine-tuning method in GMorph to train the multi-task
model recommended by TreeMTL. The number of
epochs and learning rate in the training process are
the same as those in GMorph.
• GMorph.We consider three variants of GMorph, to
evaluate the performance of components in the frame-
work. 1) GMorph: the basic GMorph consisting of
only the Simulated Annealing-based sampling policy.
2)GMorphwP: the GMorph equippedwith predictive
early termination. 3) GMorph w P+R: the GMorph
equipped with both rule-based filtering and predictive
early termination.

Inference Engines and Hardware. GMorph is imple-
mented in PyTorch [52]. By default, we use PyTorch to fine-
tune models and evaluate inference. We also compile and
evaluate the baselines and the multi-task models using Ten-
sorRT [64], a production DNN compiler using graph opti-
mizations such as operator fusion and CUDA multi-stream
execution. These experiments aim to show that our model
fusion techniques are complementary to existing compiler
optimizations. All the experiments are conducted and evalu-
ated on an NVIDIA Quadro RTX 8000 GPU.

6.2 Inference Time Reduction with Model Fusion
Model fusion using GMorph can substantially reduce the
inference latency. Figure 7 reports the speedups obtained
using the three variants of GMorph compared to the original
multi-DNNs using PyTorch. More detailed experimental re-
sults and the visualizations of the multi-task models from the
benchmarks are reported in Appendix B. Overall, without
any accuracy drop, GMorph reduces the inference latency of
the original models by 1.11-2.23× using PyTorch for all bench-
marks. When 1% − 2% accuracy drop is allowed, GMorph
further reduces the inference latency by up to 3.06×.

In B1, GMorph achieves 1.56× speedups without any accu-
racy drop because GMorph discovers a multi-task model that
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Figure 7. Normalized Latency and speedup (×) of GMorph
on PyTorch compared to baselines in each benchmark (B1-
B7). The numbers on each bar are the speedup.

allows only two of the three tasks (GenderNet and Ethinici-
tyNet) to share features from shallow layers. When 1 − 2%
accuracy drop is allowed, GMorph achieves 3.06× speedups.
This is because GMorph not only discovers that it is possi-
ble to share features from the last layer across all tasks, but
it also reduces the total number of layers using in-branch
mutation, which further reduces computation costs.
In B2, GMorph found that sharing features from shallow

layers across the three tasks ensures high task accuracy and
thus results in 1.11× speedup without accuracy drop. Within
2% accuracy drop, GMorph gives 1.5× speedups mostly be-
cause of feature sharing between AgeNet and GenderNet.
B3, B4 and B5 have DNNs with different architectures.

When allowing 1% accuracy drop, GMorph is able to reduce
the latency by up to 1.38×, 1.91×, and 1.81×, respectively.
The reason for this is that GMorph selects the appropriate
layers from each task to form a common backbone that can be
shared across various tasks, which results in large speedups
without violating the accuracy requirements.

In B6, GMorph achieves up to 2.23× speedup without ac-
curacy drop. This is because some layers from ViTBase are
shared between the two tasks and the total number of layers
in ViTLarge is reduced. When 2% accuracy drop is allowed,
GMorph can achieve 2.88× speedup since some shared layers
are further removed due to the in-branch mutation. In B7,
GMorph gives 1.56× speedup without accuracy drop by shar-
ing all the layers from BERTLarge, while gives 1.89× speedup
within 2% accuracy drop via in-branch mutation.

GMorphw P+R andGMorphw P producemulti-taskmodels
with slightly lower speedups in some benchmarks compared
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Figure 8. Inference latency of multi-task models from GMorph variants during search. Results use B1.

Benchmark PyTorch TensorRT
Original GMorph Speedup Original GMorph Speedup

B1 4.07 1.33 3.06 1.27 0.48 2.65
B2 13.04 8.68 1.5 8.88 5.89 1.51
B3 10.47 6.58 1.59 7.38 5.05 1.46
B4 9.36 3.97 2.36 3.44 1.45 2.37
B5 9.46 4.28 2.21 4.87 1.69 2.88
B6 52.81 18.36 2.88 23.21 7.14 3.25
B7 55.45 29.34 1.89 14.22 6.93 2.05

Table 3. Latency (ms) and speedup (×) comparisons between
GMorph and Original models compiled on PyTorch and Ten-
sorRT, with accuracy drop < 2%.

to GMorph because the predictive filter mechanisms could
filter out some promising candidates and lead to sub-optimal
multi-task models. However, as we will discuss in Section 6.5,
the predictive filter mechanisms can significantly reduce the
search time cost.

Combination with DNN Compilers.We also report the
latency and speedups using the TensorRT inference engine.
Table 3 compares the original task-specific DNNmodels with
the multi-task DNN produced by GMorph on both PyTorch
and TensorRT with less than 2% accuracy drop. GMorph
achieves speedups not only on PyTorch (1.5-3.06×) but also
on TensorRT (1.46-3.25×). These results demonstrate that
the model fusion techniques of GMorph can complement
existing graph optimizations in production DNN compilers.

6.3 Model Fusion vs. Multi-Task Learning
Wenow show that themulti-taskmodels produced byGMorph
by fusing separate task-specific DNNs can outperform mod-
els obtained with multi-task learning (MTL). Table 4 shows
the comparison of accuracy drop and latency speedup be-
tween the MTL baselines and GMorph. Note that the com-
parison of the accuracy drop favors the baselines, as the
accuracy drop for All-shared and treeMTL are collected after
models are trained to converge. In GMorph, fine-tuning stops
once the user-specified accuracy target (e.g., 1%) is met, but
accuracy could be even higher if the fine-tuning continues.

Benchmark All-shared TreeMTL GMorph
Acc Drop Speedup Acc Drop Speedup Acc Drop Speedup

B1 0.87% 2.31 0.87% 2.31 1% 3.06
B2 12.55% 2.16 2.79% 1.56 1% 1.44
B3 0.96% 1.16 0.81% 1.08 1% 1.38
B4 1.72% 1.08 1.72% 1.08 1% 1.91
B5 - - - - 1% 1.81
B6 - - - - 1% 2.48
B7 - - - - 1% 1.69

Table 4. Comparisons of accuracy drop and speedup (×)
between multi-task learning baselines and GMorph.

Overall, GMorph achieves similar or higher speedups with
less accuracy drop compared to MTL baselines. In B1, both
the baseline and GMorph discovered that all three tasks can
share the entire backbone within 1% accuracy drop. The
higher speedup from GMorph is because of the in-branch
mutation that further reduces the computation costs of the
shared backbone. In B2, treeMTL shares features from deeper
layers than GMorph’s model but suffers from a significant
accuracy drop (e.g., 2.79%) due to over-sharing.
In B3 and B4, where tasks use DNNs with different back-

bone architectures, performance improvements from MTL
approaches are limited to 1.08-1.16×. It is due to the fun-
damental limitation of MTL which allows two DNNs to
share only their common parts. Since the common part be-
tween VGG-16 and VGG-11/13 in B3 has only one layer (the
first convolution layer of each model) and that of ResNet-34
and ResNet-18 has only 5 convolution layers, sharing these
common layers brings only limited speedups. In contrast,
GMorph allows feature sharing in deeper layers, leading to
much higher speedups (i.e., 1.38-1.91×).
In B5/6/7, where tasks use models with entirely different

backbones or hidden sizes, MTL methods are not able to find
feature-sharing opportunities across tasks. In comparison,
GMorph demonstrates significant speedups (i.e., 1.69-2.48×
within 1% accuracy drop).
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Benchmark
Accuracy Drop <0% Accuracy Drop <1% Accuracy Drop <2%

GMorph GMorph w P GMorph w P+R GMorph GMorph w P GMorph w P+R GMorph GMorph w P GMorph w P+R
ST ST saving ST saving ST ST saving ST saving ST ST saving ST saving

B1 29.11 12.69 56% 2.96 90% 8.96 5.23 42% 2.17 76% 5.19 3.2 38% 1.82 65%
B2 386.37 289.3 25% 95.32 75% 337.94 278.27 18% 115.39 66% 313.31 224.43 28% 103.3 67%
B3 363.36 221.57 39% 114.59 68% 352 244.69 30% 115.2 67% 288.31 220.48 24% 93.93 67%
B4 211.59 120.61 43% 28.93 86% 208.25 118.68 43% 57.48 72% 192.26 119.17 38% 51.96 73%
B5 233.94 130.54 44% 34.33 85% 214.37 117.47 45% 46.3 78% 182.86 115.22 37% 38.81 79%
B6 285.28 131.29 54% 53.7 81% 255.55 123.94 52% 48.1 81% 251.34 119.87 52% 43.1 83%
B7 171.77 91.66 47% 37.88 78% 161.19 90.05 44% 36.41 77% 159.1 86.79 45% 32.67 79%

Table 5. Search time (ST) in hours and search time savings of GMorph with approaches of predictive filtering. P - Predictive
early termination. R - Rule-based filtering.

6.4 Effectiveness of the Sampling Policy
The sampling policy of GMorph explores the search space
of fused models by generating new mutated abstract graphs
from previous promising candidates (i.e., the elite candidates).
This helps the search process converge faster. We show this
by comparing different variants of GMorph with a random
sampling policy that builds candidates by sharing random
features from the original DNNs, as discussed in Section 2.1.

Figure 8 demonstrates that the sampling policy gradually
finds better candidates with lower inference latency during
the search for all GMorph variants. In comparison, random
sampling converges slower and yields less optimal multi-task
models given a fixed search budget. Specifically, random
sampling takes 31.6 hours, 21.5 hours, and 11.2 hours to
finish 200 iterations for accuracy drop threshold of 0%, 1%,
and 2% respectively, resulting in 1.56×, 2.75×, and 2.75×
speedups, which are worse than GMorph’s best speedup
(3.06×). As Figure 2 in Section 2.1 shows, random sampling
tends to generate candidates with statistically less aggressive
feature sharing. Random sampling also requires more time to
fine-tune each candidate, since candidates do not inherit the
weight of previous elite candidates and show less aggressive
computation reuse.

6.5 Effectiveness of Predictive Filtering
We now show that predictive filtering can reduce the search
time of model fusion. Table 5 compares the search time be-
tween the basic version of GMorph (GMorph), GMorph with
predictive early termination (GMorph w P), and GMorph
with both predictive early termination and rule-based filter-
ing (GMorph w P+R). Overall, predictive early termination
(GMorph w P) reduces the search time by up to 28%-56% for
all benchmarks. It can typically terminate the fine-tuning
of non-promising candidates after a few epochs based on
their test accuracy. Note that we measure the test accuracy
every 5 epochs for predictive early termination in B1-B5
while every 2 epochs in B6-B7. The reduction of searching
time could be larger by setting a smaller evaluation interval.
GMorph w P+R combines predictive early termination and
rule-based filtering, saving up to 68%-90% of the search time.
Rule-based filtering can further eliminate non-promising

multi-task models before fine-tuning, and concentrate the
fine-tuning time on more promising models.

Figure 8 further shows how, as the search progresses, the
inference latency of best multi-task models found so far for
B1 decreases. Thanks to predictive filtering, GMorph w P and
GMorph w P+R can converge much faster. Especially, given a
limited amount of search time (e.g., 2 or 3 hours), variants of
GMorph using those techniques can find better candidates.

7 Discussion
The Applicability of GMorph. There are two main ap-
plication scenarios where the benefits of GMorph can out-
weigh the expenses associated with fine-tuning and candi-
date searching. First, in performance-critical applications
(e.g., robotics [30] and extended reality [38]) running on
resource-limited devices, the speedups from GMorph can be
one of the necessary optimization steps during DNN deploy-
ment to ensure the delivery of real-time responses. Second,
GMorph can be applied to optimize multi-DNNs in model
serving systems to improve serving throughput, which is
measured as queries per second. By paying the one-time
cost of model searching and fine-tuning offline, GMorph can
fuse multi-DNNs into a resource-efficient multi-task model
to achieve lower latency and thus improve the throughput
during online model serving.
Reducing Search Time. In the current GMorph proto-

type, model search and fine-tuning are executed sequentially
on a single GPU. We can reduce search time by leveraging
PyTorch’s distributed training library. We can also distrib-
ute the training workload across multiple GPUs to reduce
the training time. In addition, our current implementation
samples only one multi-task model at a time, which limits
the efficiency of the iterative process. We can accelerate this
process by sampling multiple models in parallel or adopting
parallel simulated annealing algorithms [53].

8 Related Work
Graph Optimization. Graph optimization is crucial in deep
learning compilers [43], with common techniques like op-
erator fusion, graph substitutions, layout transformation,
etc. TensorRT [64] and TVM [8] use rule-based strategies
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for operator fusion while DNNFusion [50] follows a more
principled approach to determine beneficial fusion patterns.
MetaFlow [34] allows users to define functionally-equivalent
graph substitutions, TASO [33] automates the generation of
graph substitutions and provides correctness verification sup-
port, and PET [67] identifies optimization opportunities via
partially equivalent transformation. Unlike existing graph
optimizations which focus on graph rewriting and increasing
parallelism, GMorph explores a complementary direction
where intermediate features across well-trained single-task
models can be shared to directly reduce computation.

Multi-DNN Inference. Multi-DNN inference focuses on
efficiently running mixed DNN workloads [73] by maxi-
mizing hardware utilization (GPUs, CPU, Mobile, etc) and
avoiding contentions to reduce the execution time. Studies
have explored parallelism for concurrent execution through
graph-level space and time sharing [15, 31, 32, 51] or re-
source scheduling [1, 10, 12, 19, 47, 70–72]. Unlike GMorph,
these approaches do not reduce the resource demands of
multi-DNNs via feature sharing.
Multi-Task Learning.Multi-task learning (MTL) [7], a

sub-field in machine learning, focuses on sharing parame-
ters of a backbone model across tasks to improve accuracy.
However, it is insufficient for our problem as it assumes that
tasks use the same DNN architecture and that input data
have all task labels. MTL uses hard or soft parameter shar-
ing [2, 6, 22, 48, 54, 55, 63, 78], with the former sharing a set
of parameters in the backbonemodel among tasks and the lat-
ter sharing the task information by enforcing the similarity
of the model weights for each task. Various approaches have
been proposed for multi-task model design, including man-
ual design and task grouping [9, 20, 39, 44, 46, 49, 58, 60, 62],
and NAS-based approaches [4, 21, 26, 59, 69, 76, 77]. In con-
trast, this work deals with how to share features across tasks
given a set of well-trained DNNs with diverse architectures
and weights, and separate training data for each task. Be-
sides, automating model fusion at the system level, as done
by GMorph, has the advantage of being fully automated and
friendly to non-ML experts.

9 Conclusion
This work proposed model fusion, a novel approach to accel-
erate multiple pre-trained task-specific DNNs execution by
sharing features across them without sacrificing accuracy.
We implemented model fusion in a software framework,
called GMorph, that iteratively samples multi-task models
and evaluates their efficiency and accuracy, using a simulated
annealing-based sampling policy and predictive filtering to
lower search costs. Evaluations on seven benchmarks show
that GMorph reduces the inference latency of DNNs by up
to 3×while meeting target task accuracy goals. It also shows
that model fusion can outperform multi-task learning, and
is complementary to DNN compilation optimizations.
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A Detailed Experiment Settings
In this section, we report the detailed experiment settings
omitted from Section 6.1 due to space constraints. The tasks
we adopt for the benchmarks and the corresponding scores
are listed in Table 6.

Tasks and datasets. B1 uses the UTKFace [79] dataset,
which consists of over 20K images with annotations of age,
gender, and ethnicity.B2 andB3 use the FER2013 [23] dataset
for EmotionNet and the Adience [17] dataset for AgeNet and
GenderNet. FER2013 contains approximately 30K facial RGB
images of 7 different types of expressions. Adience contains
about 26K photos of the real world with labels of age and
gender. B4/5/6 use PASCAL VOC2007 [18] for ObjectNet and
SOS [75] for SalientNet. VOC2007 consists of 9963 images
containing over 24k annotated objects of 20 classes. SOS
contains about 7K images, where each image is annotated
with the number of salient objects in the image. B7 uses
CoLA and SST-2 datasets from the GLUE benchmark[66],
which have about 10k and 70k sentences respectively with
labels of binary classes.

For B1-B3, the score is the number of instances classified
correctly (i.e., classification accuracy), while for B4-B6, the
score is Mean Average Precision. For B7 which is a Gen-
eral Language Understanding task, the score for CoLANet
is Matthews Correlation Coefficient, while for SSTNet the
score is classification accuracy.

Benchmark Models Datasets Scores

B1
AgeNet: VGG-13

UTKFace
0.495

GenderNet: VGG-13 0.895
EthnicityNet: VGG-13 0.763

B2
EmotionNet: VGG-16 FER2013 0.698
AgeNet: VGG-16 Adience 0.662
GenderNet: VGG-16 0.791

B3
EmotionNet: VGG-13 FER2013 0.681
AgeNet: VGG-16 Adience 0.662
GenderNet: VGG-11 0.760

B4 ObjectNet: ResNet-34 VOC2007 0.884
SalientNet: ResNet-18 SOS 0.701

B5 ObjectNet: ResNet-34 VOC2007 0.884
SalientNet: VGG-16 SOS 0.693

B6 ObjectNet: ViTLarge VOC2007 0.894
SalientNet: ViTBase SOS 0.766

B7 CoLANet: BERTLarge CoLA 0.603
SSTNet: BERTBase SST-2 0.917

Table 6. Models and datasets.

Optimization Parameters. We report the learning rate
setting for training single-task DNNs in Table 6 as follows.
In B1, the learning rate lr to train all task-specific models
and to fine-tune multi-task models is 0.0005. In B2, lr is 0.001
for all models. In B3, lr is 0.001 for EmotionNet and 0.005 for

Methods
Accuracy Drop <0%

Original GMorph GMorph w P GMorph w P+R
Latency Latency speedup Latency speedup Latency speedup

B1 4.07 2.61 1.56 3.36 1.21 3.42 1.19
B2 13.04 11.79 1.11 11.79 1.11 11.79 1.11
B3 10.47 9.32 1.12 9.32 1.12 9.38 1.12
B4 9.36 6.04 1.55 6.04 1.55 7.16 1.31
B5 9.46 6.23 1.52 6.23 1.52 6.23 1.52
B6 52.81 23.68 2.23 23.68 2.23 23.68 2.23
B7 55.45 35.47 1.56 35.47 1.56 38.24 1.45

Table 7. Latency (ms) and speedup (×) of GMorph with
accuracy drop < 0%.

Methods
Accuracy Drop <1%

Original GMorph GMorph w P GMorph w P+R
Latency Latency speedup Latency speedup Latency speedup

B1 4.07 1.33 3.06 1.33 3.06 1.61 2.53
B2 13.04 9.07 1.44 9.73 1.34 9.73 1.34
B3 10.47 7.58 1.38 7.94 1.32 8.07 1.3
B4 9.36 4.91 1.91 5.12 1.83 5.18 1.81
B5 9.46 5.23 1.81 5.57 1.7 5.57 1.7
B6 52.81 21.29 2.48 21.29 2.48 21.29 2.48
B7 55.45 32.87 1.69 33.61 1.65 33.61 1.65

Table 8. Latency (ms) and speedup (×) of GMorph with
accuracy drop < 1%.

Methods
Accuracy Drop <2%

Original GMorph GMorph w P GMorph w P+R
Latency Latency speedup Latency speedup Latency speedup

B1 4.07 1.33 3.06 1.33 3.06 1.38 2.95
B2 13.04 8.68 1.5 9 1.45 9 1.45
B3 10.47 6.58 1.59 6.58 1.59 7.4 1.41
B4 9.36 3.97 2.36 4.32 2.17 4.32 2.17
B5 9.46 4.28 2.21 4.28 2.21 4.49 2.13
B6 52.81 18.36 2.88 19.93 2.65 19.93 2.65
B7 55.45 29.34 1.89 29.34 1.89 31.55 1.76

Table 9. Latency (ms) and speedup (×) of GMorph with
accuracy drop < 2%.

the others, so GMorph set 𝑙𝑟 = 0.001 . In B4 and B5, as lr are
0.001 and 0.0001 for ObjectNet and SalientNet, so GMorph
sets 𝑙𝑟 = 0.0001. In B6 and B7, lr is 0.00005 for all models.

B Detailed Experimental Results
In this section, we report the latency of multi-task models
generated from GMorph and single-task DNNs and visualize
some of these models.

Latency results. Figure 7 presents the speedups obtained
using three different versions of GMorph compared to the
original multi-DNNs using Pytorch with the normalized la-
tency. We present the corresponding latency in each experi-
ment in Tables 7, 8 and 9.
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Figure 9. Visualization of examples of mutated models from benchmark-5 with accuracy drop < 1%.

Visualization of multi-task models. In Section 6.2, we
analyze the speedups obtained by GMorph and the reason
why the inference latency of the mutated multi-task models
is reduced. In Figure 9, we present the visualizations of some
examples of the multi-task models discovered by GMorph in
the benchmark-5 for more straightforward comparisons. Fig-
ure 9(a) shows the architecture of the original model which
consists of a ResNet-34 and a VGG-16, and Figure 9(b)-(d)
show threemutatedmodels discovered by GMorphwithin 1%

accuracy drop. We omit operators such as maxpooling layers
to make the visualization simpler. Model(b) and model(c) in-
herit layers and weights from ResNet and VGG respectively
to form the common backbone but keep some independent
layers for each task. Model(d) shares the entire backbone of
ResNet while removing some layers via in-branch mutation,
which provides more speedup and is selected as the best
candidate (i.e., 1.81× as shown in Table 8).
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A Artifact Appendix
A.1 Abstract
This artifact contains the codes of GMorph, the codes of all
the benchmarks listed in Section 6.1 and Table 2, and the
codes to evaluate all the benchmarks.

A.2 Description & Requirements
A.2.1 How to access. The artifact is public and available
on GitHub: https://github.com/qizhengyang98/GMorph.git.
A readme document is also included in the repository. Codes
are under the master branch.
The artifact is also submitted to Zenodo with link: https:

//doi.org/10.5281/zenodo.10783786.

A.2.2 Hardware dependencies. CPU with 6 cores, 16G
RAM, and a GPU (10G vRAM is needed for benchmark-1,4,5,
20G is recommended for benchmark-2,3,6,7).

A.2.3 Software dependencies. Linux OS, Python = 3.8,
and several Python packages listed in the requirements.txt.
A Conda environment is recommended for installation.

A.2.4 Benchmarks. For benchmark-1, the dataset and pre-
trained single-task models are included in the repository. For
benchmarks 2-6, datasets and pre-trained single-task models
can be downloaded from this link: https://drive.google.com/
drive/folders/1Dtvd5eIDeDiseCAwCrj3_wrqjWsy3bq3?usp=
sharing. For benchmark-7, which has two GLUE tasks, the
datasets will be downloaded automatically when this bench-
mark is executed for the first time. For benchmark-6 and -7,
we use the Huggingface Transformers library [68].

A.3 Set-up
Setting up the environment takes three main steps.

Step 1: Clone the repository fromGitHub via the link listed
above.
Step 2: Download the datasets and models used for each

benchmark and put them under the corresponding folders.
You can simply run the script prepare_ds_mod.sh which pre-
pares all datasets and models automatically. To do so, run
the script after installing gdown package by:
• pip install gdown

Alternatively, you can do the following to prepare them
manually:
• Put datasets.zip under GMorph/ and unzip it. There
should be four folders under datasets: adience, ESOS,
fer2013, VOCDetection;
• Put salientNet.model, salientNet_vgg16.model, object-
Net.model under /test_metamorph/scene/pre_models.
Make the directory if it does not exist;
• Put EmotionNet.model, EmotionNet_vgg13.model,
ageNet.model, genderNet.model, genderNet_vgg11.model
under /test_metamorph/face/pre_models;
• Put age_gender.gz under metamorph/data;

• Put toy_vgg13.pt under metamorph/model;
• Put cola.zip, sst2.zip, multiclass.zip, salient.zip
under /test_metamorph/transformer_model and unzip
them.

Step 3: Under the GMorph folder, set up the conda envi-
ronment:
• conda create -n gmorph python=3.8
• conda activate gmorph
• pip install -r requirements.txt
• cd test_metamorph/transformers/
• pip install -e .
• cd ../..
• pip install metamorph/

With the above three steps, all the necessary dependencies
should be installed. To do a simple test, go to the folder
metamorph/test and run
• python test.py

If the computation graph of models is printed successfully,
then the set-up is done.

A.4 Evaluation Workflow
A.4.1 Major claims.

• (C1): GMorph can substantially reduce the inference
latency of models with different architectures with minor
accuracy drops. This is proven by the experiment (E1)
in Section 6.2 (Figure 7), and also experiment (E2) in
Section 6.3 (Table 4).
• (C2): Predictive filtering can reduce the search time of
model fusion. This is proven by the experiment (E1) in
Section 6.5 (Figure 8 and Table 5).
• (C3): The model fusion techniques of GMorph can com-
plement existing graph optimizations in production DNN
compilers like TensorRT. This is proven by the experiment
(E3) in Section 6.2 (Table 3).

A.4.2 Experiments. In this section, we provide instruc-
tions on how to execute experiments using the scripts in the
artifact.

Experiment (E1): [5 human-minutes + various compute-hour
for different benchmarks]: Run GMorph for different bench-
marks and generate well-trained multi-task models. The es-
timated search time (compute-hour) for each benchmark is
reported in Table 5.

[Preparation] Under the GMorph folder, there are several
shell scripts named submit_xxx.sh, which are used to eval-
uate different benchmarks in this experiment. We will ex-
ecute the shell scripts with proper arguments. The script
figure7table5.sh is used to reproduce the results in Figure 7,
and the script figure8.sh is used to reproduce the results in
Figure 8 and Table 5.

https://github.com/qizhengyang98/GMorph.git
https://doi.org/10.5281/zenodo.10783786
https://doi.org/10.5281/zenodo.10783786
https://drive.google.com/drive/folders/1Dtvd5eIDeDiseCAwCrj3_wrqjWsy3bq3?usp=sharing
https://drive.google.com/drive/folders/1Dtvd5eIDeDiseCAwCrj3_wrqjWsy3bq3?usp=sharing
https://drive.google.com/drive/folders/1Dtvd5eIDeDiseCAwCrj3_wrqjWsy3bq3?usp=sharing
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Under the benchmark_scripts folder, there are also separate
scripts provided to run all the experiments for each bench-
mark without manually changing arguments, and which
script corresponding to which experiment is written in the
script figure7table5.sh.

We explain the meaning of each configuration/argument
here:

• policy_select: set SimulatedAnnealingwhen testingGMorph,
set LCBased when testing GMorph w P and GMorph
w P+R.
• log_name: the name of the log file, which saves useful
intermediate information when GMorph is running.
• acc_drop_thres: the threshold of accuracy drop. Can
be set to 0, 0.01, or 0.02 to test the results shown in
Section 6.2 and Figure 7.
• enable_filtering_rules: whether or not to enable rule-
based filtering. Add this flag when testing GMorph w
P+R, and remove this flag when testing GMorph w P.
This flag is useful only when policy_select=LCBased.

Other arguments and flags do not need to be changed dur-
ing evaluations. Note that the arguments of batch_size and
num_workers can be smaller if GPU memory is not enough.

[Execution] For benchmark-1, run submit_b1.sh or the
commands in this file. Modify the flags or arguments listed
above when doing different evaluations. Benchmark-1 with
GMorph w P+R should take the least computation time,
which can be tested first.

• policy_select=SimulatedAnnealing, log_name=b1_SA_t0,
acc_drop_thres=0, enable_filtering_rules added or re-
moved;
• policy_select=LCBased, log_name=b1_LC_t001,
acc_drop_thres=0.01, enable_filtering_rules removed;
• policy_select=LCBased, log_name=b1_LC_t002_R,
acc_drop_thres=0.02, enable_filtering_rules added;
• ......

For different benchmark-n, run submit_bn.sh, and modify
the flags or arguments as shown above. To run experiments
without manually changing flags or arguments, go to the
benchmark_scripts directory and run corresponding scripts.
To reproduce results shown in Figure 7, 8 and Table 5,

run scripts figure7table5.sh and figure8.sh accordingly. Note
that running these scripts can be time-consuming, which
basically runs all the experiments for all the benchmarks,
so an alternative way is to run each experiment separately
given the comments in the scripts.

Note that since GMorph uses simulated annealing, which
introduces randomness, the outcomes from the model search-
ing may be similar but not exactly the same between differ-
ent runs. It would be better to run each benchmark multiple
times to minimize the influence of randomness.

[Results] The shell script will create a log file under the
directory: GMorph/results/log.
For each run of the script, there will be a total of 200

iterations, and in each iteration, a multi-task model will
be generated and trained. The log records the architecture
of the model, the accuracy and latency of the model, and
the overall search time at the end of each iteration. These
numbers will match the numbers in Figure 7 and Table 5. It is
likely that the results look slightly different from the results
reported in the paper due to the randomness. Evaluating
each benchmark two or three times will minimize the impact
of the randomness of the search algorithm.
The search process of GMorph can be time-consuming.

To address the problem, we provide some of the logs we
pre-generated in the log/examples folder. Those logs can also
be used as references when new logs are generated.

Experiment (E2): [1 human-minute + 5 compute-minute]: Test
the latency of all-shared multi-task models and multi-task
models found by TreeMTL.

[Preparation] None
[Execution and Results] Simply run the shell script table4.sh,

the latency of all-shared models and multi-task models found
by TreeMTL in benchmark 1-4 will be printed. The latency
of models generated by GMorph is reported in the generated
logs of E1. It does not need to finish E1 in order to do E2.

Experiment (E3): [1 human-minute + 30 compute-minute]:
Test the latency of multi-task models generated by GMorph on
both PyTorch and TensorRT.

[Preparation] None
[Execution and Results] Run the shell script table3.sh, the

model architectures found by GMorph will be compiled by
both PyTorch and TensorRT automatically, and the results,
which are the latency of the models, will be printed. 12G
GPU memory is needed for benchmark-6 and 15G is needed
for benchmark-7.


	Abstract
	1 Introduction
	2 Motivations and Challenges
	2.1 Motivation
	2.2 Challenges of Model Fusion

	3 Overview of GMorph
	4 Mutation Optimization
	4.1 Abstract Graph
	4.2 Model Parser
	4.3 Graph Mutator
	4.4 Model Generator

	5 Performance Estimation
	5.1 Predictive Filtering
	5.2 Distillation-based Fine-Tuning

	6 Evaluation
	6.1 Experiment Settings
	6.2 Inference Time Reduction with Model Fusion
	6.3 Model Fusion vs. Multi-Task Learning
	6.4 Effectiveness of the Sampling Policy
	6.5 Effectiveness of Predictive Filtering

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Detailed Experiment Settings
	B Detailed Experimental Results
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation Workflow 



