
Generalizations of the Theory and Deployment of Triangular
Inequality for Compiler-Based Strength Reduction

Yufei Ding, Lin Ning, Hui Guan, Xipeng Shen
North Carolina State University, United States
{yding8, lning, hguan2, xshen5}@ncsu.edu

Abstract
Triangular Inequality (TI) has been used in many manual al-
gorithm designs to achieve good efficiency in solving some
distance calculation-based problems. This paper presents our
generalization of the idea into a compiler optimization tech-
nique, named TI-based strength reduction. The generaliza-
tion consists of three parts. The first is the establishment of
the theoretic foundation of this new optimization via the de-
velopment of a new form of TI named Angular Triangular
Inequality, along with several fundamental theorems. The
second is the revealing of the properties of the new forms
of TI and the proposal of guided TI adaptation, a systematic
method to address the difficulties in effective deployments
of TI optimizations. The third is an integration of the new
optimization technique in an open-source compiler. Exper-
iments on a set of data mining and machine learning algo-
rithms show that the new technique can speed up the stan-
dard implementations by as much as 134X and 46X on av-
erage for distance-related problems, outperforming previous
TI-based optimizations by 2.35X on average. It also extends
the applicability of TI-based optimizations to vector related
problems, producing tens of times of speedup.

CCS Concepts •Software and its engineering → Com-
pilers

Keywords Machine Learning, Deep Learning, Triangle In-
equality, Strength Reduction, Compiler, Optimization

1. Introduction
Strength reduction is a traditional compiler optimization
technique. By replacing expensive operations (e.g., 2×b)
with equivalent but cheaper operations (e.g., b � 1), it
helps improve program performance. Traditional strength

reduction is mostly at the level of an individual instruction
or statement. Some previous studies (e.g., Finite Differenc-
ing [35]) have tried to extend the scope, but they have still
primarily focused on replacing multiplications or exponen-
tial operations (that involve loop indexing variables) with
additions.

This paper concentrates on leveraging triangular inequal-
ity (TI) to materialize a type of large-scoped strength reduc-
tion.

TI refers to a well-known basic property of triangles:
The length of an arbitrary edge of a triangle is less than
the sum of the other edges’ lengths and is greater than their
difference, as illustrated in Figure 1.

L

q t
|d(q,L) - d(L,t)| ≦ d(q,t) ≦ d(q,L) + d(L,t)

d(q,L) d(t,L)

d(q,t)

Figure 1. Illustration of traditional triangular inequality,
where d(p1,p2) is the length between points p1 and p2.

TI offers a way to estimate the lower bounds and upper
bounds of the distance between two points. Numerous al-
gorithm designs [16, 19, 23, 25, 29, 32, 40] in various do-
mains have manually employed TI for creating fast algo-
rithms. These algorithms are typically for problems that care
the distances only in a certain range. The basic idea is that if
using bounds can already tell that the distance is impossible
to fall into the range of interest, the algorithm can simply
avoid computing that distance. Figure 2 shows how the idea
helps avoid some distance computations in finding the near-
est neighbors of some points—a popular instance-based ma-
chine learning method [32]. By comparing the lower bounds
of the distance between two points with the currently short-
est distance, the optimized code can typically avoid a major-
ity of the distance calculations. Although the bounds calcula-
tion needs two other distances, in many situations, those dis-
tances are either known or can be reused across the bounds
calculations for many points. Numerous previous studies of

some specific data mining algorithms [17, 20, 26, 32] have
shown that such optimized algorithms can bring tens or even
hundreds of times of speedups.

(a)

for i = 0 to N do
minDist = Int_max;
for j = 0 to M do

dist = d(a(i), b(j));
if minDist > dist

minDist = dist;
assign(i)= j;

(b)

for i = 0 to N do
minDist = Int_max;
for j = 0 to M do

lbDist = lb(a(i), b(j));
if minDist <= lbDist
 continue;
…

//lb() function for lower bound of distance
……

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:

Figure 2. (a) original code (b) code that avoids some un-
necessary distance calculations through the use of distance
bounds.

All those prior studies are about manually applying TI to
a certain algorithm design. A recent work [15] proposes a
compiler-based framework named TOP to ease the process.
TOP uses compilers to replace some special API calls with
some TI-optimized library functions to get speedups. It is
the first work that connects TI with compilers. However, the
connection is yet shallow, mainly about using compilers as a
tool to help programmers with the TI-related code replace-
ment.

In this paper, we explore some deep connections be-
tween TI and compilers. It capitalizes on a key observation
that, essentially, what those previous works did was a form
of strength reduction: replacing expensive distance com-
putations with cheaper comparisons with distance bounds.
Based on that insight, this paper develops TI into a gener-
alized compiler technique, named TI-based strength reduc-
tion. Compared to the previous TOP work [15], this work
makes some major contributions in the underlying theory of
the optimization, as well as its deployment and integration
in compilers:

First, unlike TOP which bases the optimizations on tra-
ditional TI only, this work generalizes the theory of TI by
developing a new type of TI, named Angle Triangular In-
equality (ATI). ATI significantly expands the applicability of
TI-based optimizations, and at the same time, enhances the
tightness of the bounds. To distinguish them, from now on,
we use ETI (Edge Triangular Inequality) for the traditional
form of TI, ATI for the newly proposed form of TI, and TI for
the union of the two. Unlike ETI, which is based on edges
of triangles, ATI is on the relations among angles formed
by three vectors1. We prove that ATI finds even tighter dis-
tance bounds than ETI does. When it is used together with
ETI, ATI can help avoid even more distance calculations.
Moreover, ATI expands the applicability of TI-based opti-
mizations to include not just distance calculations but also

1 In this article, “vector” carries its mathematical meaning rather than refers
to a type of data structure.

vector-based computations, a scope no prior (manual or au-
tomatic) TI work has explored. Vector-based computations
widely exist in scientific computing, graphic applications,
deep neural networks [27], and similarity quantification in
various text mining algorithms [4, 7]. Such a generalization
is essential for making TI-based strength reduction into a
compiler technology with a broad applicability. (Section 3)

Second, this work generalizes the deployment of TI-
based optimizations. Complex code optimizations typically
incur costs; TI-based strength reduction is no exception. And
different deployments of TI face different cost-benefit trade-
offs. Finding the ways to apply an optimization appropri-
ately is an essential part of the development of a compiler
optimization technique. All prior works [15, 32] have been
resorting to some ad-hoc thresholds for dealing with the
tradeoffs. They are not robust because the tradeoff varies
with the attributes of problem instances as our experiments
show (Section 6). This work offers a systematic solution. It
reveals the main factors and tradeoffs that are related to the
deployment of ETI, ATI, and their combination. It then in-
troduces guided TI adaptation to help efficiently determine
the suitable way to configure the optimizations on the fly.
(Section 4)

Finally, this work generalizes the way the optimization
can be applied. This generalization eases the process for
domain experts to apply the TI-based optimizations. It offers
two options. For some C/C++ programs, it can automatically
detect the applicable opportunities and transforms the code
accordingly. For code not amenable for static analysis, the
domain experts can still use a set of predefined APIs to reveal
the semantics of the basic algorithm, based on which, the
compiler applies the optimizations. (Section 5)

We evaluate the technique on a set of popular data min-
ing, machine learning, and other kinds of applications, in-
cluding a neural network training algorithm commonly used
in deep believe network. The results show that our optimiza-
tions speed up standard implementations of those applica-
tions by up to tens or hundreds of times. For distance-based
computations, it outperforms previous TI-based optimiza-
tions by 2.35X on average. It successfully expands TI-based
optimizations to cover some vector-based computations that
have benefited from no prior TI-based optimizations before,
producing tens of times of speedups. (Section 6)

2. TI and Compiler Technique Development
The TI-based optimizations done in previous manual algo-
rithmic designs [17, 20, 26, 32, 40] replace costly distance
computations with less expensive bounds estimations, which
resembles the high-level concept of the traditional strength
reduction in compilers. However, to leverage the conceptual
connection and turn TI into a compiler optimization tech-
nique requires innovations and substantial efforts in multiple
dimensions.

In general, to develop a compiler optimization technique,
one needs to address questions in three major aspects:

(1) The first is to build up the theoretical foundations for
the optimization. The theory could be based on various for-
malism, from math to logic, depending on the nature of the
problem. Take polyhedral analysis-based code paralleliza-
tion as an example. Its principled problem is how to identify
data dependencies in the code, and its solution is based on
integer linear programming in loop iteration space. The na-
ture of TI-based strength reduction determines that its devel-
opment would require some different formalism. Its princi-
pled problem is how to compute some tight bounds that can
help avoid more expensive computations. Its solution calls
for some theoretical developments upon Geometry and Lin-
ear Algebra, as we will see in the next section.

(2) The second aspect in developing optimization tech-
niques is revealing the benefits, costs, and applicable con-
ditions of the optimization, and offering ways to reconcile
the various concerns in the deployment of the optimiza-
tion. Most code optimization techniques are double-edged
swords. They bring benefits but also incur costs, and are sub-
ject to certain applicability limitations. Therefore, an impor-
tant part of the development of a new compiler optimization
technique is to reveal these factors and come up with a solu-
tion to guide effective deployment of the optimization. This
aspect is particularly important for TI-based strength reduc-
tion because it contains multiple variants (some on ETI,
some on ATI, some on both) and each variant involves many
possible configurations. Understanding their properties and
effectively guiding their deployments to tap into their full
potential are hence an essential part of the development.

(3) Finally, it is obvious that for an optimization tech-
nique to become part of a compiler, it has to be inte-
grated into the compiler infrastructures. Although this part
is mostly about engineering efforts, good designs could help
make the technique flexible to apply to code with different
complexities.

The next three sections explain our development of TI-
based strength reduction on each of these three aspects.

3. Generalized Triangular Inequality Theory
This section presents the first dimension of the generaliza-
tion. It introduces a new form of triangular inequality, ATI.
Complementing the traditional triangular inequality (ETI),
ATI is based on angles rather than edges. It offers tighter
bounds and also extends TI-based strength reduction to some
vector operations beyond distance calculations.

We describe some notations first. We use θab to represent
the angle between two vectors ~a and ~b. Throughout this
paper, the angle between two vectors is measured by the
shortest great circle path between them. For instance, the
angle between ~q and ~t is θqt in Figure 3 rather than its
complement as it is greater than θqt. In another word, all the
angles between two vectors are in the range [0, π]. Although

✓qL
✓tL

✓qt
~q

~t

~L

Figure 3. Illustration of angle triangular inequality (ATI).

there is no clear physical mapping of such angle when the
vectors involved are in high-dimensional space, we could
still follow formula cos(θqt) = ~q·~t

|~q|·|~t| , to compute θqt and
restrict it to [0, π]. We next present the ATI theorem.

3.1 ATI Theorem
THEOREM 1. Angle Triangular Inequality: For three ar-
bitrary vectors ~q,~t and ~L in a space, the angles among them,
denoted as θqt, θqL, θtL, must meet the following condition:

cos(θqL + θtL) ≤ cosθqt ≤ cos(θqL − θtL). (1)

This theorem gives the bounds of cosine values among
three vectors. Cosine values are commonly used in text min-
ing for similarity comparisons. Therefore, this theorem of-
fers an important foundation for the potential usage of ATI
in strength reduction for various text mining algorithms as
Section 6 will show.

The three vectors and angles in Figure 3 illustrate the
relations stated in the theorem. Note that the vectors can be
of arbitrarily large dimensions and don’t have to reside on a
single 2-D plane. We give the proof as follows.
Proof : Let ~uq , ~ut and ~uL represent three unit-length vectors
in the direction of ~q, ~t and ~L respectively.

We introduce two derived vectors

~e1 =
~uq − ~uL · cos(θqL)

sin(θqL)

~e2 =
~ut − ~uL · cos(θtL)

sin(θtL)
.

They are both unit vectors, as ~e1 · ~e1 = 1 and ~e2 · ~e2 =
1. Moreover, they are both perpendicular to ~uL, because
~e1 · ~uL = 0 and ~e2 · ~uL = 0.

It is easy to see that the following two formulas hold (eas-
ily provable by replacing ~e1 and ~e2 with their definitions):

~uq = ~uL · cos(θqL) + ~e1 · sin(θqL)
~ut = ~uL · cos(θtL) + ~e2 · sin(θtL).

(2)

Multiplying the two equations gives (recall ~e1 · ~uL = 0
and ~e2 · ~uL = 0):

~uq · ~ut = cos(θqL)cos(θtL) + ~e1 · ~e2sin(θqL)sin(θtL).

As |~e1 · ~e2| ≤ 1 given by the Cauchy-Schwarz Inequality,
and sin(θ) ≥ 0 for all θ ∈ [0, π], we can get the following
relations:

~uq · ~ut ≥ cos(θqL)cos(θtL)− sin(θqL)sin(θtL)
~uq · ~ut ≤ cos(θqL)cos(θtL) + sin(θqL)sin(θtL).

(3)

Recall the Trigonometric Addition Formulas:

cos(θ1 + θ2) = cos(θ1)cos(θ2)− sin(θ1)sin(θ1)
cos(θ1 − θ2) = cos(θ1)cos(θ2) + sin(θ1)sin(θ1).

(4)

Therefore, we have

cos(θqL + θtL) ≤ ~uq · ~ut ≤ cos(θqL − θtL).

Because ~uq · ~ut = cos(θqt) as both uq and ut are unit
vectors, we get

cos(θqL + θtL) ≤ cos(θqt) ≤ cos(θqL − θtL).

The ATI theorem is hence proved. �
Following the ATI theorem, considering the monotonic

property of cos(θ) for θ ∈ [0, π], it is easy to get the
following corollary:

COROLLARY 1. For three arbitrary vectors ~q, ~t and ~L in a
space, the angles among them, denoted as θqt, θqL, θtL, must
meet the following condition:

|θqL − θtL| ≤ θqt ≤ π − |π − (θqL + θtL)|. (5)

The far right expression is to convert the sum of the two
angles into its counterpart in range [0, π].

Given that ~x ·~y = |~x||~y|cos(θxy), we immediately get the
following corollary:

COROLLARY 2. For three arbitrary vectors in a space ~q, ~t,
~L, the following conditions must hold:

~q · ~t ≥ |~q| · |~t| · cos(θqL + θtL)

~q · ~t ≤ |~q| · |~t| · cos(θqL − θtL).
(6)

This corollary gives the bounds of vector dot products,
which lead to the usage of ATI in strength reduction for dot
product computations as discussed in section 3.2.2.

3.2 Applications for Strength Reduction
As we have mentioned and Figure 2 has illustrated, in many
cases, the cost of computing bounds is much lower than
that of the original computations, hence the usefulness of
TI-based bound estimations for strength reductions. In the
previous section, we have briefly mentioned that the cosine
bounds from ATI could potentially help optimize text mining
algorithms. In this section, we provide a deeper view at the
possible applications of ATI for bounds calculations needed
for strength reduction.

We first explain that ATI can also be used for estimating
distance bounds, and then present an important theorem stat-
ing that ATI guarantees to give tighter (or same) bounds than
ETI does. We then show that ATI is also useful for bounds
calculations for vector-based computations, and exemplify it
on a neural network algorithm used in deep learning.

Notation: We use the same letter without a top arrow to
represent the corresponding end points of a vector (with the
origin as the start). For instance, q is the end point of vector
~q.

3.2.1 ATI For Distance Bounds
There is a well known connection between vector dot prod-
uct and distance calculations. Consider two vectors ~q and ~t.
The distance between q and t, represented as d(q, t), has the
following relation with vector dot product:

d2(q, t) = |~q − ~t|2 = |~q|2 + |~t|2 − 2~q · ~t. (7)

Following Corollary 2, we get the following bounds for
d(q, t) (lb for lower bound, ub for upper bound):

lb(d2(q, t)) = |~q|2 + |~t|2 − 2ub(~q · ~t)
= |~q|2 + |~t|2 − 2|~q| · |~t| · cos(θqL − θtL)

ub(d2(q, t)) = |~q|2 + |~t|2 − 2lb(~q · ~t)
= |~q|2 + |~t|2 − 2|~q| · |~t| · cos(θqL + θtL).

(8)

Such bounds are even tighter than the bounds from the
traditional ETI. Formally, we have the following theorem:

THEOREM 2. Tighter ATI-based Distance Bound:
For three arbitrary vectors ~q, ~t and ~L in a space, distance

bounds obtained through ATI are never less tight than those
obtained through ETI. In another word, the following always
holds:

|d(q, L)− d(t, L)| ≤
√
|~q|2 + |~t|2 − 2|~q| · |~t| · cos(θqL − θtL)

d(q, L) + d(~t, ~L) ≥
√
|~q|2 + |~t|2 − 2|~q| · |~t| · cos(θqL + θtL)

(9)

where, the left hand sides (LHS) denote the bounds of d(q, t)
computed through ETI, and the right hand sides (RHS) are
the bounds through ATI. We give the proof as follows.
Proof : As per Formula 7, d(q, L) =

√
|~q|2 + |~L|2 − 2~q · ~L;

d(t, L) can be rewritten to a similar form. With these rewrit-
ings, the two LHS of Formula 2 become the following form
respectively:

lbeti =|
√
|~q|2 + |~L|2 − 2|~q||~L|cos(θqL)

−
√
|~t|2 + |~L|2 − 2|~t||~L|cos(θtL) |

ubeti =

√
|~q|2 + |~L|2 − 2|~q||~L|cos(θqL)

+

√
|~t|2 + |~L|2 − 2|~t||~L|cos(θtL).

(10)

We next prove that for arbitrarily given ~q and ~t, and a
given direction of ~L, no matter what the length of ~L is, the
largest value of lbeti (the lower bound of d(q,t) from ETI) is
no larger than the lower bound of d(q,t) given by ATI (i.e.,
the top inequality in Formula 2.

The proof goes as follows. The condition for lbeti to reach
its maximal value is that its derivative over |~L| must equal
to zero. That is, d(lbeti)

d|~L|
= 0. Solving that equation, we

get |~L| = |~q|·|~t|·sin(θtL−θqL)

|~t|·sin(θtL)−|~q|·sin(θqL))
, and the value of lbeti at

that |~L| is
√
|~q|2 + |~t|2 − 2|~q| · |~t| · cos(θqL − θtL), exactly

equaling the first RHS in Formula 2. It hence proves that
for all the possible values of ~L along the given direction,

!!! !5! !!

!!! !!!!!!

Visible!Layer:!v""

Hidden!Layer:!h!!

h1! h2! h3! hm!

v1! vn!v2!

!!

W(1,m)

W(2,m) W(n,m)

~L

(a) (b)

Figure 4. (a) A Binary RBM with n visible units and m
hidden units (b) ATI on vector dot product.

the lower bound of d(q, t) computed by ATI is never smaller
than the lower bound computed by ETI.

In a similar way (through calculations of the derivative of
ubeti), it can be proved that ATI also gives the smallest upper
bound that ETI can give. The Tighter ATI-based Distance
Bound Theorem is hence proved. �

This theorem is fundamental, concluding on the effective-
ness of ATI over ETI in bounding distances. It suggests the
potential of using ATI to help avoid more distance calcu-
lations than that using ETI. To our best knowledge, this is
the first time that the relationship between ATI and ETI on
bounding distances is revealed.

3.2.2 ATI For Vector Product
Besides for distance bounds calculations, the bounds that
ATI gives for vector dot product can be directly of use for
optimizing computations that involve comparisons to vec-
tor dot products. Such computations exist in many scientific
computing, graphics, data analytics, and machine learning
applications. An important example with dot product com-
putations for comparisons is the Restricted Boltzman Ma-
chine (RBM), an influential type of artificial neural network
used in deep learning [38]. We take it as an example to ex-
plain the usage of ATI for optimizing vector computations.

Example RBM is composed of two layers of units as il-
lustrated in Figure 4 (a): a visible layer with n visible units
and a hidden layer with m hidden units. The values of the
visible nodes together form an n-dim vector v, and those of
the hidden-layer nodes form an m-dim vector h. An RBM is
characterized by a set of parameters: θ = (a,b,W), where,
a ∈ Rn and b ∈ Rm are the bias vectors for the visible and
hidden layers respectively, and W ∈ Rn×m is the weight
matrix that contains the weights on the edges between each
pair of visible-hidden units.

The standard training algorithm for an RBM is based
on Gibbs Sampling, which involves iterative two-way value
propagation between the visible and hidden layers. Taking
the propagation from the visible layer to the hidden layer
as an example, the propagation is based on the following

conditional probability calculation:

P (hj = 1|v) = σ(bj + vTW(:,j)), (11)

which involves vector dot product vTW(:,j). As both v and
W are high dimensional (hundreds or thousands), the dot
product (done on all nodes many times) consumes most
of the training time. In Formula 11, function σ(·) is the
sigmoid activation function, which is a monotonic increasing
function.

From the conditional probability, the value of unit hj is
determined as follows:

hj =

{
1 if r < P (hj = 1|v)
0 otherwise

(12)

where, r is a random number in the range [0,1].
Let L be a vector in the space of v. By applying Corollary

2, we can compute the bounds of the conditional probability
as follows:

lb(P (hj = 1|v)) = σ(bj + lb(vTW(:,j)))

= σ(bj + |v| · |W(:,j)|cos(θvL + θwL))

ub(P (hj = 1|v)) = σ(bj + ub(vTW(:,j)))

= σ(bj + |v| · |W(:,j)|cos(θvL − θwL)).

(13)

So according to Formula 12, if lb(P (hj = 1|v)) > r,
then hj can be set to 1, and if ub(P (hj = 1|v)) ≤ r, then hj
can be set to 0. In both cases, there is no need for computing
P (hj = 1|v).

These bounds are much cheaper to compute than P (hj =
1|v). Consider that there are N instances of v and m hidden
nodes (i.e., 1 ≤ j ≤ m in Formula 12). For a given L, the
lower or upper bounds need N +m dot products to compute
the angles θvL and θwL, m cos(), and 2 ∗ N ∗ m scalar
multiplications. In comparison, the original P (hj = 1|v)
needsN ∗m vector dot products. As v is usually in hundreds
or thousands of dimensions, saving these dot products with
the bounds can be quite beneficial.

Tighter Bounds for Vector Computations We note that
just as ATI can be used for bounding distance calculations,
ETI can also be used for bounding vector dot products.
Equation 7 can easily reformulate to the following:

~q · ~t = 1/2(|~q|2 + |~t|2 − d2(q, t)). (14)

Replacing d(q, t) with the lower and upper bounds from
ETI, we can immediately get the bounds of ~q ·~t respectively:

1/2 · (|~q|2 + |~t|2− (d(q, L)+ d(t, L))2) and 1/2 · (|~q|2 +
|~t|2 − (d(q, L)− d(t, L))2).

The tighter bounds on distances from ATI over ETI (The-
orem 2) directly leads to the following corollary:

COROLLARY 3. Tighter ATI-based Vector Product Bound:
For three arbitrary vectors ~q, ~t and ~L in a space, vector dot
product bounds obtained through ATI are never less tight
than those obtained through ETI. In another word, the fol-
lowing always holds:
1/2 · (|~q|2 + |~t|2 − (d(q, L) + d(t, L))2) ≤ |~q||~t|cos(θqL + θtL)

1/2 · (|~q|2 + |~t|2 − (d(q, L)− d(t, L))2) ≥ |~q||~t|cos(θqL − θtL).
(15)

(a) clustering problem (b) random landmarks

(d) landmark hierarchy(c) ghosts as landmarks

data point cluster center
landmark

ghost
landmark group

Figure 5. Illustrations of landmarks, ghosts, and landmark
hierarchy on a clustering example.

The development of ATI and the related theorems ex-
pands the applicability of TI-based optimizations to vector
computations besides distance calculations. It also reveals
the relative power of ATI and ETI in bounding distances and
dot products. These findings, along with the traditional trian-
gular inequality (i.e., ETI), form the theoretical foundation
for TI-based strength reduction.

4. Guided Adaptation for Deployment
Although ATI is more powerful than ETI in bounding dis-
tances and vector computations, the tightness of bounds
is not the only factor relevant to the benefits of TI-based
strength reduction. Meanwhile, applying either ETI or ATI
faces a number of tradeoffs. The benefits and overhead are
sensitive to the attributes (size, dimensions, etc.) of the data
sets to operate on, the properties of the program to opti-
mize, and some other factors. Some of these factors (e.g.,
data attributes) are not known until the execution time of the
program.

Therefore, the second essential step in developing the
technique of TI-based strength reduction is to find out the
various factors that influence the cost and benefits of the
deployment of the optimization, and to come up with ways
to effectively guide the deployment of the optimization by
compilers (and runtime).

This section describes those insights we have obtained,
and present our solution, guided TI adaptation.

4.1 Terminology
Before getting to the tradeoffs and solutions, we first intro-
duce some terminology that is essential for understanding
the rest of the discussion.

Landmarks TI-based strength reduction works in the do-
main of (often high-dimensional) points or vectors. To op-
timize the calculation of the distance between two points or
the dot product of two vectors, a third point or a third vector

would be needed to form a triangle or three angles in order
for ETI or ATI to work. Such a point or vector is called a
landmark.

Landmarks could be created and shared. Consider a clus-
tering problem, in which, there are some data points and
some cluster centers, and the goal is to find the cluster cen-
ter closest to each data point, as Figure 5 (a) illustrates. One
may pick a random location in the space as the landmark and
use it to form the triangles for optimizing the distance cal-
culations between every data point and every data center, as
illustrated in Figure 5 (b).

It is worth noting that as per their definitions, ETI and ATI
give tight bounds when the landmark is near one of the two
points (or vectors) in question. Having multiple landmarks
could offer more choices and hence help get tighter bounds.

Ghosts In many iterative algorithms, the locations of the
points or the values of the vectors in question get incremental
updates across iterations. We call their locations/values in
the previous iteration their ghosts. Because a ghost of a point
is often close to that point, it can often serve as a good
landmark.

Consider the aforementioned clustering example in Fig-
ure 5 (a). If the centers move slightly across iterations as il-
lustrated in Figure 5 (c), using the ghosts as landmarks could
help ETI or ATI give tighter bounds than using random land-
marks. Moreover, the computations already done on those
ghosts (e.g., distance to a landmark) may help save some
computations in bounds calculations by ETI or ATI.

Landmark Hierarchy and Group Filtering Although us-
ing ghosts as landmarks in Figure 5 (c) helps tighten the
bounds, there could be too many of them. Using them to get
the distance bounds for every point could incur substantial
time and space cost.

Landmark hierarchy could help mitigate the issue. Fig-
ure 5 (d) illustrates a two-level landmark hierarchy for the
clustering example. The low-level landmarks are the ghosts,
while each high-level landmark is the center location of a
group of low-level landmarks.

Landmark hierarchy enables group filtering with ghosts:
Suppose lb(q,Gi) is the lower bound between a data point
q and all cluster centers within group Gi. If through TI,
the optimization shows that lb(q,Gi) is greater than the
upper bound of the distance between q and its closest center
(ub(q)), then no t within Gi can be the closest center to q;
distance calculations from those t to q can all be avoided.
The low-level landmarks could be used if one wants to make
ub(q) tight or when the group filtering fails.

For non-iterative problems (e.g. KNN), there are no itera-
tive searches over some dynamically-updated data sets, and
thus no ghosts can be used as low-level landmarks.

Landmark hierarchy uses the high-level landmarks to re-
duce the cost while using the low-level ones to get tight
bounds when necessary. It helps to strike a balance between
the bound estimation cost and the estimation quality. It, how-

ever, introduces the complexities in determining the appro-
priate group size and grouping overhead.

4.2 Existing Insights
As ETI has been used in previous algorithm designs by do-
main experts, there is already a certain degree of understand-
ing on what landmarks should be used to better take advan-
tage of ETI [16, 19, 23, 25, 29, 32, 40], which has been sum-
marized and extended in the previous TOP work [15]. We
review those existing insights as follows. The description as-
sumes that the problem is about distances between a set of
query points (Q) and a set of target points (T).

1. If the algorithm is not iterative (i.e., repeatedly update
Q or T and recompute their distances), the landmarks
can be selected through lightweight clustering (e.g, 5-
iteration K-Means clustering) on either T or Q.

2. For iterative algorithm with T or Q getting updated re-
peatedly, we could use the counterparts of T or Q in the
previous iteration as landmarks for this iteration.

3. If the memory space is stringent and the dimension of
points is not large, consider to use two levels of land-
marks by grouping nearby low-level landmarks into a
high-level landmark.

These insights are valuable, but they are insufficient for
automatic TI-based strength reduction, for two reasons.
First, all these insights are about ETI. The newly proposed
ATI differs from ETI in some important ways. There is yet
no previous understanding on the proper usage of it. Sec-
ond, the insights on ETI are qualitative, appearing fuzzy
and ambiguous, exemplified by “|T | is much smaller than
|Q|”, “space is stringent”, “dimension is not large”. Auto-
matic deployment of the optimizations requires quantitative
measures for using these insights. For instance, how much
space is considered stringent? Is it relative to the size of the
problem? If so, how to tell whether the condition is met for a
particular problem? Previous work addresses these questions
by using some thresholds, which are often fragile, working
well on some data sets but poorly on others as Section 6 will
show. We next present our solutions to both issues.

4.3 Special Properties Related with ATI
This section describes four special properties of ATI for
strength reduction. The first is its most important appealing
property that Section 3.2.1 has already proved, we repeat it
here for completeness. The second is about what landmarks
ATI prefers. The third and fourth are about the relations
between ATI and two important optimizations for TI-based
strength reduction: the use of group filtering, and the use of
early stop.

Property I: Tighter Bounds. For three arbitrary points, the
distance, cosine similarity, and vector product bounds from
ATI (on the corresponding vectors) are never less tight than

those from ETI. This property makes ATI appealing in many
usage cases.

Property II: Landmark Preference. Unlike ETI, which
prefers landmarks close to either point in the question, ATI
prefers landmarks that form small angles from either of the
vectors in question. It is easy to see, from the definition of
ATI, that such landmarks give tighter bounds than those with
large angles from both vectors.

Property III: Group Filtering. Regarding group filtering,
we have the following insight:

For saving distance calculations, ETI is amenable for
group filtering but ATI is not; for saving cosine simi-
larity comparisons, ATI is amenable but ETI is not; for
saving dot products, neither ETI nor ATI is amenable
for group filtering.

We next give a detailed explanation of that insight on dis-
tance calculations and a brief explanation on the other two
cases.

• Distance:
For a group of target points G and a given landmark L,
according to Formula 8, the distance bounds from a query
point to G can be written as follows:

lb(d(q,G)) =
√
|~q|2 +min

~t∈G
(|~t|2 − 2|~q| · |~t| · cos(θqL − θtL));

ub(d(q,G)) =
√
|~q|2 +max

~t∈G
(|~t|2 − 2|~q| · |~t| · cos(θqL + θtL)).

(16)

While the distance bounds from a query point to G based
on ETI can be written as follows:

lb(d(q,G)) = d(q, L)−max
~t∈G

d(L, t);

ub(d(q,G)) = d(q, L) + max
~t∈G

d(L, t).
(17)

So, for getting the bounds for a group of target points,
ETI needs just the farthest distance from the target points
to the landmark (e.g., max(d(L, t))). In comparison, as
Equation 16 shows, the bounds calculation by ATI would
need the bounds on both the angles and the lengths of
the target vectors. Efficiently computing and tracking
both kinds of bounds add extra complexities. In addi-
tion, unlike ETI, in which max(d(L, t)) stays the same
across different query points, the bounds of the angles
cos(θqL − θtL) used in Equation 16 can be different
across query points (as θqL varies with ~q), making it even
more difficult to compute and track angle bounds effi-
ciently.
• Cosine Similarity:

On the other hand, for cosine similarity, the group bounds
from ATI depend only on the largest angle from the target
vectors to the landmark (e.g., max(θ~L,~t)), which stays
the same across different query points. But the group
bounds from ETI depend on multiple factors and are

hence harder to get. We list the group bounds from ATI
and ETI in the Formulae 18 and 19 respectively, with the
derivation details omitted.

lb(cos(θ~q,G)) =

cos(θ~q,~L +max
~t∈G

θ~L,~t
) if θ

~q,~L
+max

~t∈G
θ~L,~t

≤ π;

−1 otherwise.

ub(cos(θ~q,G)) =

cos(θ~q,~L −max
~t∈G

θ~L,~t
) if max

~t∈G
θ~q,~t ≤ θ~q,~L;

1 otherwise.
(18)

lb(cos(θ
~q, ~G

)) = min
~t∈G

((|~q|2 + |~t|2 − (d(q, L) + d(L, t))2)/2|~q||~t|);

ub(cos(θ
~q, ~G

)) = max
~t∈G

((|~q|2 + |~t|2 − (d(q, L)− d(L, t))2))/2|~q||~t|).

(19)

Note that Formula 18 is derived based on the assumption
that all angles are in the range of [0, π]. In the cases (e.g.
document clustering) where only positive cosine similar-
ity is interesting, the formulae can be easily modified by
replacing −1 with 0 and π with π/2.
• Vector Product:

Formulae for computing the group-level vector product
bounds can be derived from Formula 18 and Formula 19
by multiplying |~q| ∗ |~t| on both sides. Both would be
relevant to multiple factors, and are hence difficult to
compute. So in general, for vector products, no group
filtering is used.

Property IV: Early Stop. Early stop is an optimization in
TI-based strength reduction. Consider that a program needs
to check whether the distances from q to a group of points
t ∈ G are smaller than a constant C. Suppose all these
points share the same landmark L. An efficient way to do
the check is to first sort the points in G in a descending
order of d(t, L). As a result, the upperbounds of d(q, t) by
ETI (d(q, L) + d(t, L)) would be in a descending order as
well. So as soon as the check encounters a point whose
upperbound is smaller than C, no checks would need to
do for the remaining points because their upperbounds, and
hence d(q, t), must be smaller than C.

Our insight on early stop is similar to that on group
filtering:

For saving distance calculations, ETI is amenable for
early stop but ATI is not; for saving cosine similarity
comparisons, ATI is amenable but ETI is not; for
saving dot products, neither ETI nor ATI is amenable
for early stop.

The reasons for the insights are the same as those for the
insights on group filtering. For example, consider ATI-based
distance saving. Because the lower bounds from ATI are
related with both the length of the target vector and the angle
between that vector and the landmark, sorting the target
points based on their distance lower bounds from ATI is
hence difficult to do efficiently.

Problem Type Tightness Grouping Early Stop
ETI ATI ETI ATI ETI ATI

Distance 7 3 3 7 3 7

Vector Product 7 3 7 7 7 7

Cosine 7 3 7 3 7 3

Table 1. Comparison between ATI and ETI in terms of
bound tightness and support of group filtering and early stop
over different problem types.

Based on all these analytical results, we use Table 1 to
summarize the important properties of ATI and ETI for TI-
based strength reduction. ATI is more powerful than ETI in
getting tight bounds, but for distance calculations, it is not
amenable to group filtering and early stop.

4.4 Insights for Deploying ATI
These properties suggest the following insights for employ-
ing ATI for strength reductions.

(1) ATI shall be used without ETI for optimizing vector
dot products, and cosine similarities (e.g. top k document re-
trieval, document clustering, and RBM). In such cases, land-
marks shall be created based on the angles of the vectors
(e.g., running a lightweight K-Means clustering on the an-
gles of all vectors). Grouping can be applied for algorithms
with cosine similarity, but should be avoided for optimizing
vector dot products.

(2) When ATI is used for optimizing distance calcula-
tions, it is best to be combined with ETI. Such a combination
could leverage the best of both worlds: benefiting from the
tighter bounds that ATI provides, and at the same time, en-
joying the benefits of grouping and early stop that ETI could
bring.

We design an algorithm to combined ATI and ETI for
distance calculations. It is outlined in Figure 6. It first checks
whether group filtering shall be applied. If so, ETI is needed
for computing the group-level bounds. In the meantime,
target points in the same group would be sorted based on
their distances to the landmark (for early stop). If the group
filtering fails on a group of target points, point-level filtering
is applied to them. ETI is first used because it allows early
stop as described in Section 4.3. If ETI-based filtering fails,
ATI-based point-level filtering is used. In our experiment,
we found that ATI can frequently filter out around half the
remaining cases thanks to the tighter bounds it provides. If
that filtering also fails, the distance is computed.

4.5 Guided TI Adaptation
We develop a guided TI adaptation technique to tackle
the second issue in deploying TI-based strength reduction,
which is to automatically determine the suitable configura-
tions in the deployment of the optimization.

As mentioned earlier, the suitable way to apply TI-based
strength reduction relies on many factors, some of which
(e.g., problem size, data dimensions) remain unknown until
the execution time of the program. An ideal solution hence

//check whether group filtering is applicable
….

if (group filtering is applicable)
 //prepare for group-level filtering with ETI

for L in Landmarks do
sort target points in L based on their distances to L

for i = 0 to |Q| do
//ETI for group-level filtering
for L in Landmarks do

if ETI_bound(Q[i], L) passes the comparison
continue;

for target point t in L do
//ETI for point-level filtering
if ETI_bound(Q[i], t) passes the comparison

break;
//ATI for point-level filtering
if ATI_bound(Q[i], t) passes the comparison

continue;
//if all previous filtering fails, run the original code.
…..

Figure 6. Pseudo-code for combined optimization of dis-
tance calculations by ETI and ATI-based strength reduction.

must be adaptive to the many runtime factors, and at the
same time, incur only minimum overhead.

Guided TI adaptation tries to achieve these goals through
a careful combination of qualitative insights, cost-benefit
modeling, and runtime sampling. It uses the aforementioned
qualitative insights to help narrow down the configuration
space of the optimization, employs cost-benefit modeling to
characterize some analyzable aspects of the performance and
overhead, and uses runtime sampling to treat the aspects that
are difficult to model.

4.5.1 Space Cost
A suitable deployment of the TI-based strength reduction
should have an acceptable space cost, regarding the memory
space budget given either by the user or by the hardware lim-
itation. Space cost includes the space for storing landmarks
and the distances (or bounds) between points and landmarks.
It is mainly determined by the size of the problem and the
number of landmarks. With such information, the space cost
can be easily computed analytically. For a given landmark
creation scheme, these models help determine the maximum
number of landmarks allowed to create to fit in the given
space budget. Execution time is more complicated; we give
it a more detailed discussion.

4.5.2 Time Cost and Benefit
The time cost and benefit of TI-based strength reduction are
hard to model in a static way. Take the ETI optimization as
an example, it helps avoid some distance calculations be-
tween queries and targets, but also introduces time overhead,
including the time for computing bounds between queries
and targets, distances (or bounds) from landmarks to queries
or targets, and extra comparisons among bounds and dis-
tances for avoiding distance calculations. The benefits and
costs depend on the size of the problem, the number of land-
marks, but also the locations or distributions of the queries

and targets. It is more difficult to compute the time cost and
benefit analytically to determine the suitable ways to create
or select the landmarks for a given problem.

Our method uses the qualitative insights listed in Sec-
tions 4.2 and 4.3 to first determine the possible directions
to explore, and then uses runtime sampling to precisely de-
termine the solution.

Algorithm Based on the qualitative insights, the algorithm
quickly classifies a given program into one of the six cate-
gories: non-iterative distance calculations, iterative distance
calculations, non-iterative dot product, iterative dot product,
non-iterative cosine similarity, iterative cosine similarity. We
take the first category as an example to explain our method,
which include non-iterative problems on distances between
two sets of points (called query and target sets).

The method considers only one-level landmarks as per
the qualitative insights. It contains a built-in performance
model for the time savings that the TI-based strength reduc-
tion can offer, shown as follows:

Tsave = TsavedDistance − Toverhead;

TsavedDistance = (rd · n ·m) · tdistance;

Toverhead = TcreateLM + TLMdistance + Tchecks

' (p ·m · k) · tdistance

+ (n+m) · tdistance

+ (rc · n ·m+ n · k) · tchecks;

(20)

where, k is the number of landmarks, m and n are the num-
bers of target points and query points, rd is the fraction of
distance calculations avoided through the TI optimization,
tdistance is the time taken to calculate the distance of one
pair of points, tchecks is the time taken to conduct one con-
ditional check on bounds, rc is the fraction of bound cal-
culations carried out between each pair of query and target
points. Thanks to group filtering and early termination, rc
usually is much smaller than one. The formula assumes that
the landmarks are created through p iterations of K-Means
clustering applied to the target points.

The formula for TsavedDistance in the model is the
amount of time saved on distance calculations. The three
components of Toverhead are respectively the time taken for
creating landmarks, the time for computing the distances
from each target point to its associated landmark, and the
time for checking the distance bounds. The optimization in-
troduces some other operations, but they are omitted from
the model as the time they take is negligible compared to
those three parts.

The cost-benefit tradeoff of TI-based strength reduction
is embodied by the model: The larger k is, the tighter
the bounds are, and hence the larger r is and the larger
TsavedDistance is, but at the same time, the larger Toverhead
is. The goal of our automatic configuration is to determine
the value of k to maximize Tsave.

The challenge is that the relation between k and rd and rc
is difficult to model because it depends on the distributions

of the data values. That makes it hard to figure out the best k
analytically.

We circumvent the difficulty through a runtime sampling-
based method. The method consists of the following steps.

(1) Sampling. It takes a random small portion (1% in our
experiments) of the data sets to form a sample S.

(2) Hierarchical Clustering. It runs a quick k-means on
S to get k groups, where k is set to 3

√
|S|. It then runs hi-

erarchical clustering on the centroids of the groups to build
a cluster hierarchy (a tree) with a higher level cluster com-
posed of some smaller clusters. Such a hierarchy offers the
flexibility for examining the influence of different numbers
of landmarks.

(3) Trials. It applies TI-based strength reduction to the
computations on S in repeated trials. In each trial, it uses a
different number of landmarks by taking the centers of the
clusters at a certain level in the cluster hierarchy. Specifi-
cally, it starts from the bottom level of the hierarchy contain-
ing 3

√
|S| landmarks, and goes up a step on the hierarchy af-

ter each trial such that the number of landmarks reduces by
about 0.5

√
|S| each time. It records the fraction of distance

calculations that are avoided in each trial. As side products
of the trials, it attains the average tdistance and the average
tchecks.

(4) Binary Search. Based on the data collected from Step
3, for an arbitrary number of landmarks, through scaling (x
landmarks for S correspond to x ∗

√
|D|/|N | to the whole

date set D) and interpolation, the method can estimate the
savable fraction of distance calculations of the entire data
set, with which, Tsave can be computed for that number
of landmarks through Equation 20. That allows the use of
Binary Search to quickly find the best number of landmarks.

For the other cases, our solution works in a similar man-
ner. Details are omitted. It is worth noting that the guided TI
adaptation is intended to be used when the input data sets are
non-trivial (over 10K points), the sample of which can cap-
ture the characteristics of the entire data set. Such datasets
also need the optimizations the most. When the data set is
small, the need is usually less; prior simpler methods could
be used.

5. Integration with Compilers
Based on LLVM, we integrate TI-based strength reduction
into a prototype compiler. The compiler supports two modes.
It tries to use code pattern matching to automatically detect
the opportunities for applying the optimizations, and trans-
forms the code accordingly. At the same time, it offers a set
of APIs. Using these APIs, a programmer can express the
semantics of the basic algorithms, upon which, the compiler
applies the optimizations. This second mode makes the opti-
mization useful even if the original code is not immediately
amenable for static analysis.

p = a calculated distance or dot product
q = f (p); // some value is derived from p;
 // f() is a monotonic relation;
 // inside f(), x is indep. of p;

if (q op x){ // op is a comparison operator
 body_1;
} // body_1 may read or write p or q
body_2; // no reads of p or q

p = a calculated distance or dot product
q = f (p); // some value is derived from p;
 // f() is a monotonic relation;
 // inside f(), x is indep. of p;

if (q op x){ // op is a comparison operator
 body_3;
}
else{
 body_4;
} // only one of body_3 and body_4 can read p or q
body_5; // no reads of p or q

(a) Pattern 1 (b) Pattern 2

Figure 7. Allowed usage patterns of distances or dot prod-
ucts.

5.1 Through Pattern Matching
The code pattern that the compiler looks for is loops (or
BLAS [5] functions) for vector dot product, matrix-matrix
multiplication, or distance calculations, with some com-
parisons over their results following the loops (or function
calls).

Specifically, we build a detection gadget with LLVM/-
Clang C/C++ compiler frontend. Based on LibTooling and
LibASTMatchers supplied by this frontend, it can search for
the piece of code having those patterns. Three AST node
matchers (forStmt, binaryOperator, FunctionDecl) are used
to do the matching. For distance calculations, it currently
supports basic patterns for computing Euclidean distances.

Checking the code following the computations of dis-
tances and dot products has some intricacies. For TI-based
strength reduction to work soundly, the usage of the dis-
tances or dot products has to meet some conditions. For in-
stance, if they are the ultimate output of the program, TI-
based strength reduction shall not be applied as it avoids the
computations of some of the results. Specifically, our com-
piler module checks whether the usage is one of the two pat-
terns illustrated in Figure 7. In the first pattern, the relevant
condition check has only one branch, while the second pat-
tern allows two branches. However, in either case, only one
branch reads values of or derived from the distance or dot
product. That ensures that the bounds-based filtering by the
TI-based strength reduction can work properly. The function
“f” in Figure 7 represents monotonic relations. An example
is the sigmoid function commonly used in artificial neural
networks. The monotonicity is necessary for keeping the de-
rived values from the bounds useful.

5.2 Through Assistance of API
Some programs are not amenable for static analysis due to
code complexities (e.g., aliases and pointers). To ease the
application of TI-based strength reduction in such cases, in-
spired by some previous work [15], we provide a set of APIs
for programmers to use. In these APIs, programmers can ex-
press the basic algorithm of their applications that involve
distance calculations or dot products. Through them, the
compiler can easily capture the semantic of the algorithms
and generate the TI-optimized code. Figure 8 lists the core

_SR_dotProduct(_SR_vector, _SR_vector);
_SR_vectorMatrixProduct(_SR_vector, _SR_matrix);
_SR_mm(_SR_matrix, _SR_matrix);
_SR_defDistance (enum);
_SR_getLowerBound (_SR_pointSet, _SR_pointSet);
_SR_getUpperBound (_SR_pointSet, _SR_pointSet);
_SR_findClosestTargets (int, _SR_pointSet, _SR_pointSet);
_SR_findFarthestTargets (int, _SR_pointSet, _SR_pointSet);
_SR_findTargetsWithin (float, _SR_pointSet, _SR_pointSet);
_SR_findTargetsBeyond (float, _SR_pointSet, _SR_pointSet);
_SR_update (_SR_pointSet, …);

Figure 8. Core APIs for assisting TI-based Strength Reduc-
tion.

APIs. The prefix “ SR ” marks the functions and data struc-
tures defined for TI-based strength reduction. The first three
functions indicate the type of vector operations, the fourth
one indicates the type of distance to compute, and the re-
maining functions indicate the type of relations between the
point sets that are of interest.

6. Evaluation
To demonstrate the efficacy of the proposed TI-based strength
reduction, we experiment with eight influential algorithms
from various domains, including data mining, deep learning,
and graph analytics.

We compare the performance of the implementation op-
timized by our technique with two other versions: the stan-
dard and the optimized. The standard versions are the imple-
mentations of the eight classic algorithms [6, 9, 14, 18, 21,
28, 31, 42], on which no triangular optimization is applied.
The optimized versions are attained by applying TOP [15], a
latest work which applies TI-based optimizations. It has two
limitations. First, it can apply only ETI and only to distance-
based algorithms. Second, its application of the optimiza-
tion is in an ad hoc manner relying on a set of hardcoded
thresholds rather than the systematic adaptive approach this
work describes. As no prior work has given methods to ap-
ply TI-based optimizations to vector product or cosine sim-
ilarity calculations, the standard and optimized versions of
the three such algorithms are identical. All implementations
are in C++, compiled by GCC with “-O3” optimization flag
used.

All the versions of an algorithm have the same seman-
tic; they produce the same outputs. Therefore, our discus-
sion focuses on the performance (running time). The perfor-
mance data are collected on a workstation equipped with In-
tel i5-4570 CPU and 16G memory. Each performance num-
ber comes from the average of five repeated runs. Besides
reporting the speedups, we also analyze the impact of our
runtime support for dynamic adaption.

6.1 Benchmarks
In the following, we will give a brief introduction to the
eight benchmarks. The first five benchmarks (KNN, KN-
Njoin, KMeans, ICP, NBody) are the benchmarks the TOP

work uses. Including them allows a head-to-head direct com-
parison with the previous work. The other three benchmarks
(DC, KDR, RBM) involve dot products, which allow us to
assess the extra applicability enabled by the introduced API.
All these algorithms play some important roles in their re-
spective domains. The datasets used for evaluation are com-
monly used in previous works for performance testing. In
particular, they are selected to cover a large range of input
sizes, dimensions, and various settings (e.g., K for KNNjoin,
KNN, and KMeans).

KNNJoin [6] tries to find K points in set T that are
closest to every query point in set Q. KNN [21] is similar
to KNNJoin except that it tries to find K target points that
are closest to a single query point each time. Such difference
would affect the kinds of available TI-based optimizations.
For example, grouping on the query points is one type of
optimization that is not available for KNN, but is beneficial
for KNNJoin. We test these two algorithms on three datasets,
Gassensor, Kegg and MiniBooNe, obtained from the UCI
Machine Learning Repository [2]. The dataset size N ranges
from 13K to 130K, and the dimension ranges from 28 to 129.
For each dataset, we test it for K = 10, 50, 100.

KMeans[31] tries to group points in a set into K clusters.
It runs iteratively, starting with K initial centers and stopping
at convergence. In each iteration, it labels every point with
the center that is closest to it, and then uses the average
location of the points in the same cluster to update the center
of the cluster. We tested KMeans on three datasets: Kegg,
USCensus and Notredame to cover a large range of dataset
sizes and dimensions. The first two datasets are obtained
from the UCI Machine Learning Repository [2] and the last
one is a commonly used image dataset [39]. The dataset size
N ranges from 65K to 2.5Million, and the dimension ranges
from 28 to 128. In particular, we test Kegg for K = 16, 64,
256; USCensus and Notredame for K = 64, 256, 1000.

ICP[9] is an algorithm mapping the pixels (points) in a
query image to the pixels in a target image. It is an iterative
process. In each iteration, it maps each pixel in a query im-
age to a pixel in the target image that is similar to the query
pixel, and then transforms the query image in a certain way.
We tested ICP on three datasets, abalone, krkopt and letter,
obtained from the UCI Machine Learning Repository [2].
The dataset size N ranges from 4K to 28K, and the dimen-
sion ranges from 6 to 16.

Nbody [18] simulates the interplay and movements of
particles in set Q in a series of time steps. In each step, it
computes the distances between every particle and all par-
ticles in its neighborhood. From the distance, it then de-
rives the force the particle is subject to, computes its move-
ment accordingly, and updates its position. The algorithm
has some variations. The one used in this work defines the
neighborhood of a particle as a sphere of a given radius. We
tested it on three datasets used in previous work [15]. The
dataset size N ranges from 5K to 440K. The dimension is al-

ways three, representing the position of particles in the three
dimensional space.

Document clustering (DC) [28] is the application of clus-
tering techniques to textual documents. DC applys the com-
monly used term weighting strategy TF-IDF, and dimen-
sion reduction method, Non-negative Matrix Factorization
(NMF) [41], to first get a vector representation of the doc-
uments. It then applies Kmeans on the cosine similarity of
these vectors to do clustering. The experiment uses three
datasets, enron, nytimes, and pubmed, all from the UCI Ma-
chine Learning Repository [2]. The dataset size N ranges
from 40K to 1M and the original dimension ranges from
2.8K to 141K. The reduced dimensions are 20 for the small-
est dataset enron, 50 for nytimes and 200 for pubmed. For
each dataset, we tested K = 64, 128, 256.

Top-K Document Retrieval (KDR) [42] is a related prob-
lem from information retrieval. It aims to produce K docu-
ments that are most similar to a query document [37]. Cosine
similarity is used in KDR to quantify the difference between
documents. We tested on the same datasets as the ones in
DC. The top-K related documents are calculated for each
document in the dataset. For each dataset, we tested K = 10,
50, 100.

For Binary RBM [38] (described in Section 3.2.2), we
tested it on three datasets (binary images being used):
the MNIST handwritten digits dataset [30], the small 20-
Newsgroup dataset [33] and the transformed MNIST (f-
MNIST) dataset in which each pixel flips its value [10].
The number of images in the datasets ranges from 8.5K to
50K. The number of visible units ranges from 100 to 784
while the number of hidden units is set to 500.

As described in Section 5, our compiler-based strength
reduction framework could work on programs through ei-
ther code pattern matching or the assistance of APIs. Among
the eight algorithms we tested, KNN, KNNJoin, KMeans,
DC, KDR and RBM are directly transformed from the stan-
dard implementations in C++ through code pattern match-
ing, while ICP and NBody are rewritten by us using our APIs
due to the complexities (e.g., distance computations mixed
with updates, complicated function calls with pointers) in
their standard implementations.

6.2 Overall Performance
The graph in Figure 9 gives our speedups on each dataset
over the standard implementations of the algorithms. Com-
pared with the standard version, which does not use TI-
based optimizations, our technique achieves as much as
134X (NBody) speedups and 46X on average.
The accelerations come primarily from the savings of dis-
tance or dot product computations. Although the mount of
savings vary, depending on many factors, we observe over
91% computation savings for all the datasets tested on these
benchmarks other than RBM. In particular, we notice that
the savings are often more prominent for larger input and
problem settings (e.g., dataset size, data dimensions, and the

number of clusters). Dataset size is the most influential fac-
tor across all benchmarks, regarding the fraction of skipped
computations. For example, the most substantial speedup for
KMeans is obtained on the largest dataset USCensus, which
has dataset size N = 2.5Million, data dimensions D = 64, and
number of clusters K = 1K.
The overhead of bound computations is always negligible
compared to the original computation cost in the standard
version without TI optimization. The reason for this is two-
fold. First, bound computation itself is a scalar operation,
while both distance and dot product computation are vec-
tor operations. When the data dimension is high, the cost of
bound computation is much smaller than that of direct dis-
tance and dot production computation. Second, when group-
ing and early termination is used as described in section 4.3,
the total number of bound computations carried out is much
smaller than that of distance and dot product computations
required in a standard version.
The table at the bottom of Figure 9 reports our speedups
(average across all datasets) over the previously optimized
versions [15]. Compared to the optimized versions, our opti-
mization gets 1.14X–1.46X speedups on the distance-based
problems, on which, the previous method applies ETI only
and does that with some thresholds. On the other programs
(DC, KDR, and RBM) that work with cosine similarity
or vector dot products, the previous method cannot apply,
while our method achieves 3.2X–10.1X speedups thanks to
its ATI-based optimizations.

Among these three benchmarks, the computation saving
and speedup on RBM are not as large as on the other al-
gorithms, but are still substantial, up to 84% and 4.8X (on
f-MNIST). The limited speedup for RBM is a result of three
constraints. First, the number of units in the visible layer
and hidden layer are limited, much smaller compared to the
number of points in other algorithms. Second, the vector dot
product results are scaled down through a Sigmoid function,
and thus the requirement on the bounds quality is higher.
Furthermore, optimization technique such as group-filtering
and early termination can not be applied.

For the other two benchmarks DC and KDR, the speedups
are more substantial. We find that with ATI we could re-
move at least 91% and frequently over 94% of the vector
product computations on datasets of various dimensions and
sizes. These tremendous savings translate into the substan-
tial speedups. The speedups are not as much as the savings
of computations because the comparisons with bounds add
some overhead and complexities in the control flows.

The leftmost five benchmarks in Figure 9 are distance-
related problems. We achieve great speedup over the stan-
dard version. The accelerations come primarily from the
savings of distance computations enabled by TI optimiza-
tions. We found that our method could remove at least 93%
and frequently over 99% of the distance computations on
the datasets of various dimensions and sizes. As the table

in Figure 9 reports, our framework also outperforms previ-
ously highly-optimized versions on testing datasets. The ex-
tra speedups come from two aspects. The first is ATI, which
expands the applicability of TI-optimizations to dot prod-
ucts, and further improves the quality of the bounds for dis-
tance calculations. The second is the guided TI adaptation.
With it, the compiler can better select the deployment strate-
gies of TI optimizations that fit each problem and dataset,
striking a better cost-benefit tradeoff. We give some detailed
analysis of both factors next.

Speedup Over Standard Versions

100

101

102

103

G
as

se
ns

or
Ke

gg
 M

in
iB

oo
N

E

G
as

se
ns

or
Ke

gg
 M

in
iB

oo
N

E

Ke
gg U

S
C

en
su

s
N

ot
re

D
am

e

Ab
al

on
e

Le
tte

r
Kr

ko
pt

48
-1

5c
r1

48
-1

5c
r2

32
-1

5c
r

en
ro

n
pu

bm
ed

ny
tim

es

en
ro

n
pu

bm
ed

ny
tim

es

M
N

IS
T

20
N

ew
sg

ro
up

f-M
N

IS
T

KNN

KNNJo
in

KMea
ns ICP

NBod
y DC

KDR
RBM

Benchmarks

Sp
ee
du
p

Average Speedup Over the Performance from the Prior Methods
Prog KNN KNNjoin KMeans ICP Nbody DC KDR RBM geomean

Speedup 1.35X 1.46X 1.19X 1.17X 1.14X 9.19X 10.13X 3.23X 2.35

Figure 9. The graph shows the speedup over the standard
version; the table reports the average speedup of our auto-
matic framework compared to the previously optimized ver-
sions [15].

6.3 Guided TI Adaptation
The guided adaptation in our TI-based strength reduction
gives a more systematic way to deploy the optimizations
than prior methods. To help isolate the effects of guided TI
adaptation, we strip off the usage of ATI from our versions.
The algorithms on vector computations are not shown be-
cause the ETI-based TOP method cannot apply to them.

Figure 10 reports the benefits brought by the adaptive de-
ployment compared to the previous threshold-based ad-hoc
deployment in TOP. The grey bars show the speedups, rang-
ing from 1.09X to 1.27X. The black segment on each bar
shows the time overhead incurred by the runtime sampling
and adaptation operations, less than 3% in all cases. When
the data size gets larger or the problem is iterative, the over-
head is smaller as it weights less in those longer runs.

6.4 Tighter Bounds by ATI
ATI generates tighter bounds for distance calculations than
ETI does. To give a detailed examination on the benefits,
we take KNNJoin as an example and report the fraction of
extra savings of distance calculations by ATI in various set-
tings. Recall that KNNJoin is a program trying to find the

Benchmarks
KNN KNNJoin KMeans ICP NBody

Sp
ee
du
p

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

G
as

se
ns

or
Ke

gg M
in

iB
oo

N
E

G
as

se
ns

or
Ke

gg M
in

iB
oo

N
E

Ke
gg

U
S

C
en

su
s

N
ot

re
D

am
e

Ab
al

on
e

Le
tte

r Kr
ko

pt

48
-1

5c
r1

48
-1

5c
r2

32
-1

5c
r

Dynamic Adaption Overhead

Figure 10. Speedup brought by the guided TI adaptation
over using rigid rules [15] for deploying TI-based optimiza-
tions. The top black segment on each bar represents the over-
head incurred by the runtime sampling and adaptation.

Datasets
Gassensor Kegg MiniBooNE Abalone Letter Krkopt

R
at
io

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
K = 100
K = 50
K = 10

Figure 11. Fraction of extra savings of the distance compu-
tations due to the tighter bounds by ATI over those by ETI
on KNNJoin.

K nearest points for each query point. Besides the three
datasets used in the previous subsections, we add three ex-
tra datasets abalone, krkopt and letter to further enrich the
datasets. These three datasets are from the UCI Machine
Learning Repository [2]; their sizes are 4.1K, 20K, 28K, and
dimensions are 8, 16, 6 respectively.

The usage of ATI in KNNJoin is to examine the cases
that pass through the ETI checks before conducting dis-
tance computations. The examination gets the lower distance
bounds through ATI and compares them against the current
upperbound of the k nearest neighbors. Distance calcula-
tions are done only if the former are smaller than the latter.

Figure 11 reports the fraction of extra savings, defined
as the fraction of distance computations that are regarded as
necessary to do in ETI but unnecessary to do in ATI thanks
to the tighter bounds offered by ATI. In the graph, K is the
number of nearest neighbors to find for each query point.
We vary its value from 10 to 50 and to 100. Figure 11 shows
that more than 39% of the distances can be further avoided
by applying ATI. More savings are shown for smaller K
values than the larger ones. It is because as the number of
nearest neighbors of a point to find decreases, more points

are less likely to be the nearest neighbors and hence more
potential for TI-based optimizations. The tighter bounds of
ATI turns out to give more benefits. But overall, the savings
are substantial in all the tested cases.

7. Related Work
Strength reduction is a classic program optimization tech-
nique in compilers. Most prior techniques are about re-
placing multiplication-like operations with cheaper addi-
tions [12]. Finite differencing [35] and some later extensions
try to optimize incremental computations hidden in loops. To
our best knowledge, this paper is the first that proposes the
concept of TI-based strength reduction. By generalizing the
technique into a program optimization technique, it enriches
the applicable scenarios of strength reduction by compilers.

The main savings from TI-based strength reduction come
from the avoidance of unnecessary computations. Removing
redundant computations from a program is a classic topic in
compiler [12]. Prior efforts have tried to extend the scope of
the optimizations [11, 13, 24]. They have all focused on re-
moving common subexpressions or dead code. The distance
computations and dot products that TI-based strength reduc-
tion helps avoid are not considered as redundant in those
methods, because their computing results are all used in the
conditional checks in the original program, and they are not
the type of repeated computations on the same values that the
prior methods address. TI-based optimization is also related
to incremental computations [1, 3, 36] or dynamic program-
ming, but it is more flexible in what and how computations
can be reused. In incremental computation, the exact result
of the computation on a sub-problem is reused, whereas TI
optimization reuse previous similar but not exactly the same
computation result.

Triangular inequality has been used in the design of many
algorithms, including K-Means [16, 17, 20, 26], other data
mining and machine learning algorithms [32, 40], graph
problems [23], and so on [22]. All these are manual algo-
rithm designs, and exploit only ETI. Framework TOP tries
to automate the process, showing even better results than
the manual ones [15]. This work was inspired by TOP, but
makes some significant extensions in both theory and im-
plementation. First, it explores some deep connections be-
tween TI and compilers, and develops the concept of TI-
based strength reduction. Second, unlike TOP which bases
the optimizations on traditional TI only, this work general-
izes the theory of TI by developing a new type of TI, named
Angle Triangular Inequality (ATI), and presents some funda-
mental properties of ATI and its relations with the traditional
TI (e.g., Theorems 1 and 2 and Corollary 3). Third, this work
finds out the various factors that influence the cost and bene-
fits of the deployment of ATI-based optimizations, and char-
acterizes the scenarios in which the different types of TI-
based strength reductions can work well with group filtering
and early stop optimizations. Fourth, this work generalizes

the deployment of TI-based optimizations. Instead of reply-
ing on APIs only, it exploits the possibility for compilers to
automatically transform code to leverage the optimizations
through code pattern matching. Moreover, it replaces pre-
vious ad hoc thresholds with guided TI adaptation to help
efficiently determine the appropriate ways to configure the
optimizations on the fly. Finally, all the extensions help ex-
pands the scope of TI-based optimizations from distance-
related problems to problems related with distances, vector
dot products, and cosine similarities, and demonstrates the
significantly enhanced applicability and effectiveness with a
variety of applications.

Recent years witnessed some development of approximation-
based program optimizations [8, 34]. TI-based strength re-
duction keeps the semantic of the original program, uses
no approximations, and hence introduces no errors into the
computation results. Combining TI with approximation-
based optimizations could worth future studies.

8. Conclusion
This paper has proposed TI-based strength reduction. It is
inspired by the previous work on applying triangular in-
equality in algorithmic designs. It generalizes the idea into
a compiler optimization technique by making three-fold ex-
plorations: building up the theoretic foundation via the de-
velopment of the ATI-related theorems, revealing the prop-
erties of ATI and proposing guided TI adaptation to offer a
systematic solution to the difficulties in determining the ef-
fective ways to deploy TI-based optimizations, and then inte-
grating the techniques into an open-source compiler through
a dual-mode design. Experiments validate the effectiveness
of this new technique, showing as much as 134X and 46X
on average speedups over the original implementation, out-
performing the state of the art optimizations by 2.35X on av-
erage. It expands the applicability of TI-optimizations from
distances to vector computations and cosine similarity.

Acknowledgment
We thank the feedback from the anonymous reviewers
and the help from our shepherd Mayur Naik. This mate-
rial is based upon work supported by DOE Early Career
Award (DE-SC0013700), the National Science Foundation
(NSF) under Grant No. 1455404, 1455733 (CAREER), and
1525609. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DOE or
NSF.

References
[1] B. Aaron, D. E. Tamir, N. D. Rishe, and A. Kandel. Dynamic

incremental k-means clustering. In Computational Science
and Computational Intelligence (CSCI), 2014 International
Conference on, volume 1, pages 308–313. IEEE, 2014.

[2] K. Bache and M. Lichman. UCI machine learning repository,
2013.

[3] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and
R. Pasquin. Incoop: Mapreduce for incremental computations.
In Proceedings of the 2nd ACM Symposium on Cloud Comput-
ing, page 7. ACM, 2011.

[4] V. Bijalwan, V. Kumar, P. Kumari, and J. Pascual. Knn based
machine learning approach for text and document mining.
International Journal of Database Theory and Application,
7(1):61–70, 2014.

[5] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C.
Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, et al. An updated set of basic linear algebra subpro-
grams (blas). ACM Transactions on Mathematical Software,
28(2):135–151, 2002.

[6] C. Böhm and F. Krebs. The k-nearest neighbour join: Turbo
charging the kdd process. Knowledge and Information Sys-
tems, Springer, 6(6):728–749, 2004.

[7] D. Cai, X. He, J. Han, and T. S. Huang. Graph regularized
nonnegative matrix factorization for data representation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33(8):1548–1560, 2011.

[8] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quanti-
tative reliability for programs that execute on unreliable hard-
ware. In ACM SIGPLAN Notices, volume 48, pages 33–52.
ACM, 2013.

[9] Y. Chen and G. Medioni. Object modeling by registration of
multiple range images. In Robotics and Automation, IEEE,
pages 2724–2729, 1991.

[10] K. Cho, T. Raiko, and A. Ilin. Enhanced gradient and adap-
tive learning rate for training restricted boltzmann machines.
In Proceedings of the 28th International Conference Proceed-
ings of the 28 th International Conference on Machine Learn-
ing, Bellevue, WA, USA, 2011.

[11] K. Cooper, J. Eckhardt, and K. Kennedy. Redundancy elimi-
nation revisited. In Proceedings of the 17th international con-
ference on Parallel architectures and compilation techniques,
pages 12–21. ACM, 2008.

[12] K. Cooper and L. Torczon. Engineering a Compiler. Morgan
Kaufmann, 2003.

[13] S. J. Deitz, B. L. Chamberlain, and L. Snyder. Eliminating
redundancies in sum-of-product array computations. In Pro-
ceedings of the 15th international conference on Supercom-
puting, pages 65–77. ACM, 2001.

[14] E. W. Dijkstra. A note on two problems in connexion with
graphs. In Numerische mathematik, volume 1, pages 269–271,
1959.

[15] Y. Ding, X. Shen, M. Musuvathi, and T. Mytkowicz. Top:
A framework for enabling algorithmic optimizations for
distance-related problems. In Proceedings of the 41st Inter-
national Conference on Very Large Data Bases, 2015.

[16] Y. Ding, X. Shen, M. Musuvathi, and T. Mytkowicz. Yinyang
k-means: A drop-in replacement of the classic k-means with
consistent speedup. In ICML, 2015.

[17] J. Drake and G. Hamerly. Accelerated k-means with adaptive
distance bounds. In 5th NIPS Workshop on Optimization for
Machine Learning, 2012.

[18] V. Eijkhout. Introduction to High Performance Scientific
Computing. Lulu. com, 2010.

[19] C. Elkan. Using the triangle inequality to accelerate k-means.
In ICML, volume 3, pages 147–153, 2003.

[20] C. Elkan. Using the triangle inequality to accelerate k-means.
In ICML, volume 3, pages 147–153, 2003.

[21] E. Fix and J. L. Hodges Jr. Discriminatory analysis-
nonparametric discrimination: consistency properties. In
DTIC Document, 1951.

[22] A. V. Goldberg and C. Harrelson. Computing the shortest
path: A search meets graph theory. In Proceedings of the
sixteenth annual ACM-SIAM, pages 156–165, 2005.

[23] M. Greenspan and G. Godin. A nearest neighbor method for
efficient ICP. In 3-D Digital Imaging and Modeling, IEEE,
pages 161–168, 2001.

[24] G. Gupta and S. V. Rajopadhye. Simplifying reductions. In
POPL, volume 6, pages 30–41, 2006.

[25] G. Hamerly. Making k-means even faster. In SDM, SIAM,
pages 130–140, 2010.

[26] G. Hamerly. Making k-means even faster. In SDM, pages
130–140. SIAM, 2010.

[27] G. Hinton., S. Osindero, and Y. Teh. A fast learning algorithm
for deep belief nets. Neural Comput., 18(7):1527–1554, July
2006.

[28] A. Huang. Similarity measures for text document clustering.
In Proceedings of the sixth new zealand computer science
research student conference (NZCSRSC2008), Christchurch,
New Zealand, pages 49–56, 2008.

[29] J. Z. Lai, Y.-C. Liaw, and J. Liu. Fast k-nearest-neighbor
search based on projection and triangular inequality. Pattern
Recognition, Elsevier, 40(2):351–359, 2007.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, November 1998.

[31] S. Lloyd. Least squares quantization in pcm. In Information
Theory, IEEE, volume 28,2, pages 129–137, 1982.

[32] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing
of k nearest neighbor joins using mapreduce. Proceedings of
the VLDB Endowment, 5(10):1016–1027, 2012.

[33] B. M. Marlin, K. Swersky, B. Chen, and N. Freitas. Induc-
tive principles for restricted boltzmann machine learning. In
Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 509–516, Chia
Laguna Resort, Sardinia, Italy, 2010.

[34] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Ri-
nard. Chisel: Reliability-and accuracy-aware optimization of
approximate computational kernels. In ACM SIGPLAN No-
tices, volume 49, pages 309–328. ACM, 2014.

[35] R. Paige and S. Koenig. Finite differencing of computable
expressions. ACM Transactions on Programming Languages
and Systems (TOPLAS), 4(3):402–454, 1982.

[36] K. Ravichandran, R. Cledat, and S. Pande. Collaborative
threads: exposing and leveraging dynamic thread state for
efficient computation. In Proceedings of the 2nd USENIX
conference on Hot topics in parallelism, pages 4–4. USENIX
Association, 2010.

[37] H. Schütze. Introduction to information retrieval. In Pro-
ceedings of the international communication of association
for computing machinery conference, 2008.

[38] T. Tieleman. Training restricted boltzmann machines using
approximations to the likelihood gradient. In Proceedings
of the 25th International Conference on Machine Learning,
pages 1064–1071, New York, NY, USA, 2008. ACM.

[39] J. Wang, J. Wang, Q. Ke, G. Zeng, and S. Li. Fast approximate
k-means via cluster closures. In Computer Vision and Pattern
Recognition (CVPR), IEEE, pages 3037–3044, 2012.

[40] X. Wang. A fast exact k-nearest neighbors algorithm for
high dimensional search using k-means clustering and triangle
inequality. In Neural Networks (IJCNN), IEEE, pages 1293–
1299, 2011.

[41] W. Xu, X. Liu, and Y. Gong. Document clustering based on
non-negative matrix factorization. In Proceedings of the 26th
annual international ACM SIGIR conference on Research and
development in informaion retrieval, pages 267–273. ACM,
2003.

[42] Y. Yang and X. Liu. A re-examination of text categorization
methods. In Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development in in-
formation retrieval, pages 42–49. ACM, 1999.

	Introduction
	TI and Compiler Technique Development
	Generalized Triangular Inequality Theory
	ATI Theorem
	Applications for Strength Reduction
	ATI For Distance Bounds
	ATI For Vector Product

	Guided Adaptation for Deployment
	Terminology
	Existing Insights
	Special Properties Related with ATI
	Insights for Deploying ATI
	Guided TI Adaptation
	Space Cost
	Time Cost and Benefit

	Integration with Compilers
	Through Pattern Matching
	Through Assistance of API

	Evaluation
	Benchmarks
	Overall Performance
	Guided TI Adaptation
	Tighter Bounds by ATI

	Related Work
	Conclusion

