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Abstract—This work proposes adaptive deep reuse, a method
for accelerating CNN training by identifying and avoiding the
unnecessary computations contained in each specific training on
the fly. It makes two-fold major contributions. (1) It empirically
proves the existence of a lot of similarities among neuron
vectors in both forward and backward propagation of CNN.
(2) It introduces the first adaptive strategy for translating the
similarities into computation reuse in CNN training. The strategy
adaptively adjusts the strength of reuse based on the different
tolerance of precision relaxation in different CNN training stages.
Experiments show that adaptive deep reuse saves 69% CNN
training time with no accuracy loss.

Keywords-CNN; neuron vector; similarity; training; adaptive;
deep reuse;

I. INTRODUCTION

Recent years have witnessed successes of Convolution

Neural Networks (CNNs) in many data mining and data

engineering domains. CNNs have given the state-of-the-art

prediction accuracy in many tasks, but are known to be

compute-expensive and subject to a long training process.

Many efforts have been taken to accelerate CNN training,

including removing weight redundancy [1]–[3], using low

precision [4], [5], hashing [6] and utilizing sparsity [7]–

[9]. Most of these techniques focus on identify the weight

redundancy and reduce the number of computations of the

convolutional layer. In this paper, we propose adaptive deep
reuse for accelerating CNN training. Instead of focusing on the

weight parameters, this paper points out new opportunities for

accelerating CNN training through computation reuse based on

properties in convolutional layers’ inputs. Here, inputs refer to

the input images for the first layer and activation maps for the

following hidden layers.

The insight comes from the common existence of simi-

larities among neuron vectors that we recently observed in

CNN executions [10]. Take the forward propagation of the

first convolutional layer of a CNN as an example. To compute

the convolution between an input image and the weight filters,

the common practice is to unfold the input image into a large

input matrix x, and then multiply x with the weight matrix W
as illustrated in Figure 1 (a). Usually, the size of x is much

larger than the size of W . So if there are many similarities in

x between neuron vectors, it could give some opportunities for

computation reuse. Here a neuron vector is any number of
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Figure 1. (a) Illustration of the common practice of computing the convolution
between an image and the weight filters for the first convolutional layer.
(b) and (c) Illustration of the basic idea of computation reuse across neuron
vectors on calculating x ·W . Instead of calculating 16 dot products, we only
need to compute 8 of them: �x11 · �w11, �x11 · �w12, �x31 · �w11, �x31 · �w12,
�x12 · �w21, �x12 · �w22, �x22 · �w21and �x22 · �w22.

consecutive elements in a row of the unfolded input matrix x.

For example, as shown in Figure 1 (a) and (b), �x41 = [x41x42]
is a neuron vector with 2 elements. If the layer is the input

layer of a CNN, the vector corresponds to the pixel values of

a segment of the input image; if the layer is a hidden layer, the

vector corresponds to the values of a segment of the activation

map at that layer.

To exploit the similarities and the reuse, we can group the

neuron vectors in x into a small number of groups. For each

group, we only need to compute the multiplications between

one neuron vector and the corresponding weight segments.

When calculating the multiplications between the same weight

segments and the remaining neuron vectors in the same group,

we could reuse previous results. For example, as shown in

Figure 1 (b) and (c), we represent x with eight neuron vectors.

These eight vectors are grouped into four groups and vectors
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in the same group are similar to each other. Group one has

two vectors �x11 and �x21. There are four dot products using

these two vectors: �x11 · �w11, �x21 · �w11, �x11 · �w12 and �x21 ·
�w12. To leverage the similarity among neuron vectors within

a group, the result of �x11 · �w11 can be reused for �x21 · �w11 and

�x11 · �w12 for �x21 · �w12. With these computation reuses, only

two rather than four dot products need to be computed. Half

of the computations can be saved.
The goal of this current paper is to create ways to effec-

tively exploit the neuron vector similarities to accelerate CNN

training. To that end, we strive to answer four major questions:

• CNN training consists of both forward propagation and

backward propagation. The backward propagation partic-

ularly involves more complicated operations than forward

does. Those operations are to propagate errors from the

output layer all the way down to the input layer for guid-

ing weight updates. Do neuron vector similarity based

reuse applies to both forward and backward propagation?

How to integrate the reuse into backward propagation?

Do we need to repeat the similarity identification for the

two directions of propagation?

• Reusing cluster centers for cluster members incurs errors.

How do the errors influence CNN training quality and

convergence rate?

• Given that CNN training goes through an iterative process

with training errors decreasing gradually, does it make

sense to evolve the aggressiveness of the reuse (in terms

of allowed reuse-incurred errors) through the training

process? How to do that to shorten the training time as

much as possible while compromising no quality of the

final trained CNN?

• How much ultimate benefits can the reuse bring to real-

world CNNs?

To answer these open questions, this paper proposes adap-
tive deep reuse and systematically explores its integration in

CNN training and its effects.
We start with some brief background on CNN training and

list a set of notations used throughout the paper in Section II.

We then explain, in Section III, neuron vector similarities

that we have recently observed [10], and how they can be

recognized through Locality Sensitive Hashing (LSH), an

online clustering method.
Next, in Section IV, we analyze the key computation of the

forward and backward propagation, and explain why similarity

detection is needed to do in only forward propagation. We

explain how the computation of the backward propagation can

directly reuse the similarity and the clustering results attained

in the forward propagation. The insight lays the foundation

for efficient integration of neuron vector-level reuse in CNN

training.
Section V explores the relations between reuse aggressive-

ness and computation accuracy. Based on the progressive trend

of training accuracy in CNN training, we introduce two strate-

gies for dynamically adjusting the strength of computation

reuse. They try to align the aggressiveness of the reuse with

the evolving degree of error tolerance in CNN training. One

strategy adjusts the resolution of hashing functions and the

number of clusters, the other strategy changes the scope of

clustering (across input batches or not). The dynamic nature

equips adaptive deep reuse the capability to detect and exploit

the reuse in each specific CNN training on the fly.

Section VI reports our experimental results. On three com-

monly used CNNs, adaptive deep reuse saves up to 69%

training time while giving the same training accuracy as the

original CNN training does. The significant savings come from

two properties of adaptive deep reuse. By clustering neuron

vectors at runtime, it finds the redundant computations in each

specific run of a CNN; by adapting to the progressive trajectory

of the CNN through the training process, it strikes a balance

between the aggressiveness in computation savings and the

training accuracy.

Overall, this work makes the following main contributions:

• To our best knowledge, this work is the first study

that systematically explores neuron vector similarities for

speeding up CNN training.

• This work proves that the backward propagation could

benefit directly from the neuron vector similarity detected

in the forward propagation, which is the key point for

efficient computation reuse in the backward propagation.

• The proposed adaptive deep reuse is the first method

that adaptively and effectively turns the similarities into

substantial savings of CNN training times.

II. BACKGROUND AND NOTATIONS

CNN training contains two parts: the forward propagation

and the backward propagation.

For the forward pass, the formula that a convolutional layer

uses to compute the output for a given input x and model

parameters W, b is as follows:

y = x ·W + b, (1)

where x is the unfolded input matrix, y is the output matrix,

W is the weight matrix and b is the bias.

When performing the computation, the convolutional layer

takes an input tensor with size Nb× Iw × Ih× Ic and outputs

an output tensor with size Nb×Ow×Oh×M . Here, Nb is the

batch size. Iw, Ih and Ic are the width, height and the number

of channels of the input to the convolutional layer. The input

could be an input image or an activation map. Ow, Oh and

M are the width, height and the number of channels of the

corresponding output.

The input is unfolded into a large input matrix x with a

dimension of N ×K using a stride size of s, a kernel width

of kw and a kernel height of kh. When the stride s is 1, N =
Nb·(Iw−kw+1)·(Ih−kh+1) is the number of rows for a batch

of inputs and K = Ic · kh · kw is the size of a weight kernel.

The number of rows corresponding to one input is Nimg =
N
Nb

. The weight of the convolutional layer is represented as

a matrix W with size K ×M , where M is the number of

weight filters. The output y has a dimension of N ×M and

is computed using Equation 1. The main computation comes
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Table I
NOTATIONS USED IN THIS PAPER

NOTATION MEANING

Nb BATCH SIZE

Iw WIDTH OF AN INPUT CHANNEL

Ih HEIGHT OF AN INPUT CHANNEL

Ic # OF CHANNELS OF THE INPUTS

Ow WIDTH OF AN OUTPUT CHANNEL

Oh HEIGHT OF AN OUTPUT CHANNEL

N # OF ROWS FOR A BATCH OF INPUTS

K THE SIZE OF A WEIGHT KERNEL

M # OF WEIGHT KERNELS

s STRIDE

kw THE KERNEL WIDTH

kh THE KERNEL HEIGHT

Nimg # OF ROWS CORRESPONDING TO ONE IMAGE

L THE LENGTH OF A sub-vector
H # OF HASHING FUNCTIONS

|C| # OF CLUSTERS

rc THE REMAINING RATIO
|C|
N

from the matrix-matrix multiplication, which has a complexity

of O(N ·K ·M ).
For the backward pass, there are two key computations to

perform: one is computing the gradient of the weight ∇W ;

the other is computing the deltas of the inputs δx. Let L be

the loss function, δy = ∂L
∂y , δx = ∂L

∂x and ∇W = ∂L
∂W . Given

the chain rule, formulas of the two key computations are

∂L
∂W

=
∂L
∂y

· ∂y

∂W
= xT · δy, (2)

∂L
∂x

=
∂L
∂y

· ∂y
∂x

= δy ·WT . (3)

The main computations are two matrix multiplications. Since

the dimension of δy is the same as y, the complexity of the

backward pass is O(2 · N ·K ·M ).
Table I gives a list of all the notations that are mentioned

in this paper.

III. SIMILARITY IDENTIFICATION AND DEEP REUSE

This section explains the basic relation between neuron

vector similarity and computation reuse in CNN forward

propagation, and how to identify it through online clustering.

The knowledge offers the foundation for adaptive deep reuse
for CNN training.

A. Overview

Fig. 2 illustrates the basic idea of how to employ neuron

vector similarity for deep reuse. The way to identify the

similarities is to group the neuron vectors into clusters. Neuron

vectors in the same group are similar to each other. Then we

use the cluster centroid to represent all the neuron vectors

in that cluster for the computation. In Fig. 2, the four input

row vectors are first grouped into two clusters. Vectors �x1

and �x3 are in cluster one while vectors �x2 and �x4 are in

cluster two. The centroid matrix is xc = [�xT
c1 �xT

c2]
T , where

• ••
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• •• • •• • •• • ••
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• ••
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Figure 2. The basic idea of employing neuron vector similarity for deep
reuse. In matrix x, vectors in the same color belong to a same cluster.

�xc1 and �xc2 are the cluster centroids of cluster 1 and cluster

2. To compute y = x · W , we first calculate the output of

the centroids (yc = [�yTc1 �yTc2]
T ) using yc = xc ·W . Then

we could reconstruct y = [�yT1 �yT2 �yT3 �yT4 ]
T using �y1 = �yc1,

�y2 = �yc2, �y3 = �yc1 and �y4 = �yc2.

Computation Savings: For an input matrix x with a

dimension of N × K, the original computation complexity

of the forward pass y = x ·W is O(N ·K ·M). If we could

group all the neuron vectors into |C| clusters, we only need to

compute the matrix multiplication between the centroid matrix

xc and the weight matrix W . The computation complexity

becomes O(|C|·K·M). The remaining fraction of computation

is
|C|
N . We use rc to represent this ratio. It is defined as

Remaining ratio: rc = |C|
N .

The smaller rc is, the less computations are left and the more

theoretical speedups we could achieve. If |C| << N , we could

save almost all computations.

For deep reuse to generate actual benefits, the following

conditions must hold:

• There is a large amount of similarities among neuron

vectors.

• The overhead of detecting and leveraging these similari-

ties should be much smaller than the time saving it brings

to the CNN training. Since the inputs, especially the

activation maps, change during the runtime, the clustering

method we use to identify the similarities must be light

weighted.

To verify our assumption on neuron vector similarity, we

take the trained model of CifarNet, AlexNet and VGG-19 and

run their inferences on two datasets (Cifar10 and ImageNet).

Our empirical study shows that with K-means clustering

(which helps produce high-quality clustering results), we con-

sistently find strong similarities among neuron vectors within

a batch of images for each convolutional layer. Section VI

provides the results.

As for the second condition, we have tried several clustering

methods and found LSH the one that fulfills our requirement.
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The remaining of this section will describe how to use LSH

to detect the similarities, and describe several designs related

to the selection of clustering parameters.

B. Design of Similarity Detection for Deep Reuse

It is important to choose an appropriate clustering method

for similarity identification. First, it needs to be able to give

good clustering results so that the optimization of adaptive
deep reuse does not cause accuracy loss of the training.

Second, the clustering method should not introduce too much

overhead during the training so that the computation savings

could be efficiently converted into time savings.

Clustering Method (LSH): After a thorough exploration of

several different methods, we identified LSH as the clustering

method for the adaptive deep reuse. LSH is widely used for

solving the approximate or exact Nearest Neighbor problem

in high dimension space [11]–[15]. With a random vector v,

we could use the following equations to determine a hashing

function h for each input vector x

hv(x) =

{
1 if v · x > 0

0 if v · x ≤ 0.
(4)

If we have a number of random vectors, say H , we will have H
hashing functions according to Equation 4. With these hashing

functions, LSH could map an input vector into a bit vector with

a length of H . A property of LSH is that the input vector with

smaller distances have a high probability to be hashed into the

same bit vector. Therefore, it is a good candidate algorithm

for clustering in our context. When applying it, we use each

hashed bit vector as a cluster ID and all the neuron vectors

mapped to the same bit vector form a cluster.

To measure the effectiveness of LSH, we run LSH on the

neuron vectors during the inference runs of trained CNN

models. Experiment results (Section VI) show that when

choosing an appropriate number of hashing functions, LSH

can be applied to vectors with different lengths and achieve

good inference accuracy. With LSH applied, the operations of

a convolutional layer now consist of two parts: hashing and

the centroid-weight multiplication. The hashing itself takes

some time. If having H hashing functions, the computation

complexity is O(N ·K ·H+|C|·K ·M). The first item N ·K ·H
is the hashing overhead. Comparing to the original complexity

of O(N ·K ·M), LSH brings benefit only if H << M(1−rc),
where rc is the remaining ratio |C|/N .

Similarity Metric: The metric we use to measure the

similarity between any two neuron vectors is the angular

cosine distance. The input vectors are first normalized as

x̂i = xi

‖xi‖ . Then the distance is measured with ‖x̂i − x̂j‖.
Therefore, the input to LSH is x̂ instead of x.

Cluster Scope: Adaptive deep reuse supports the detection

of similarities among neuron vectors in three levels of clus-

tering scopes: the neuron vectors in a run on one CNN input

(single-input level), those in the runs on a batch of inputs

(single-batch level), and those across batches (across-batch

level). With a larger scope, the pool in which the neuron

vectors being clustered is larger and there are more reuse

opportunities among neuron vectors. The default scope setting

is the single-batch level. The user could change the setting into

a single-input or across-batch level according to their demands.

For the single-input or single-batch level, we can simply

apply the clustering algorithm to all the neuron vectors within

an input or within a batch directly. Some further complexity

exists when the scope goes across batches. Since inputs from

different batches come at different times, it is impractical to

wait until all the inputs arrive to do clustering.

We address the complexity with cluster reuse by leveraging

the properties of LSH. The idea is to allow neuron vectors

from different input batches to be assigned to the same cluster

and to share the value and computation result of the same

cluster centroid. With LSH, we can reuse an existing cluster if

a new neuron vector is hashed to a bit vector that has appeared

before. No matter which batches two neuron vectors belong to,

if they are mapped to the same bit vector, they are assigned

with a same cluster ID and thus to the same cluster. To do

that, the same family of hash functions H has to be used for

all batches.

Algorithm 1 Cluster Reuse

1: Input: input matrix x with dimension N × K; the set

IDX contains the bit vectors representing the cluster ID;

the set of outputs Y corresponding to IDX .

2: Algorithm:
3: Initialize with IDX = {}, Y = {}
4: for each iteration do
5: take a batch of input with a batch size of Nb

6: for each row vectors xi do
7: ID(xi) = H(xi)
8: if ID(xi) ∈ IDX then
9: y(xi) = Yid=ID(xi)

10: else
11: IDX = IDX ∪ ID(xi)
12: y(xi) = xi ·W
13: Y = Y ∪ y(xi)
14: end if
15: end for
16: end for

Algorithm 1 illustrates how to reuse the clusters and the

corresponding results with LSH. A set IDX is used to store

all previously appeared bit vectors (the cluster IDs) and a

set Y is used to store all the outputs computed with those

cluster centroids. When a new batch of inputs comes, we map

each neuron vector to a bit vector using LSH. For neuron

vectors being mapped to existing clusters, we could reuse the

corresponding outputs. If a neuron vector is mapped to a new

cluster, we calculate the output as y(xi) = xi · W . After

that, we could update IDX and Y accordingly. The average

cluster reuse rate for each batch is represented as R. The

computation complexity when using cluster reuse becomes

O(N · K · H + (1 − R) · |C| · K · M) if using the whole

row vector for clustering. Therefore, a larger cluster reuse rate

could help saving more computations.

1541



•
•

cluster 3: 

cluster 4: 

• •• • •• • • •• • • ••

• • ••
• • •• •• • • •• •

• • •• • • •• • • ••

• • ••

• • ••

• • ••

• • ••

cluster 1: 

cluster 2: 

•• • •• • • ••

•• • •• • • ••

• • •• • • •• • • ••

• • ••

• • ••

• • ••

• • ••

•
• ••

• ••

• ••

• ••

• •• •

• •••

• •••

• •••

• •••

• •••

• •••

• •• •• • •• ••
• •••

• •••

•

• • •• • • •• • • ••

• •• •••

• • •• • • •• • • •• • •••
• •••

• •• ••
• •••

• •••

• •• •

• •••

• •••

• •••

• •••

Figure 3. Illustration of adaptive deep reuse when clustering over sub-vectors.

Cluster Granularity: In the basic scheme shown in Fig-

ure 2, each row vector in matrix x is taken as a neuron

vector. Our experiments indicate that a smaller clustering

granularity with a shorter neuron vector length can often

expose more reuse opportunities. We refer the neuron vector

which is a consecutive segment of a row vector as a sub-vector.

Our design allows a flexible adjustment of the clustering

granularity by changing the length (L) of the sub-vector.

Fig. 3 illustrates the procedures of adaptive deep reuse
while clustering over sub-vectors. The input matrix x is

divided into two sub-matrices x(1) and x(2). Where x(1) =
[�xT

11 �x
T
21 �x

T
31 �x

T
41]

T and x(2) = [�xT
12 �x

T
22 �x

T
32 �x

T
42]

T . For each

sub-matrix, adaptive deep reuse groups the neuron vectors

into clusters, computing the centroid matrices x
(i)
c and the

corresponding outputs y
(i)
c . Then it reconstructs the partial

output y(i) for each sub-matrix. To compute the final output

y, it adds the partial result together as y = y(1) + y(2).

As clustering algorithms usually work better on low dimen-

sion data, we see better clustering results when a smaller

clustering granularity is used. However, a smaller neuron

vector length results more neuron vectors, and hence more

adding operations. Therefore, it does not always save more

computations. Assume each input row vector is divided into

Nnv neuron vectors and the length of each neuron vector is L.

We have Nnv ·L = K; the computation introduced by all the

adding operations is O(N · K
L ·M), where K,M,N are the

size of a weight filter, the number of weights filters and the

number of rows for a batch of inputs. The average number of

clusters is |C|nv,avg = 1
Nnv

∑Nnv

j=1 |C|nv,j . For simplicity of

notations, we use rc to also represent the average remaining

ratio in this part of discussion (rc = rc,avg =
|C|nv,avg

N ).

The computation complexity of clustering over sub-vectors

becomes O((rc +
1
L ) ·N ·K ·M). With a smaller clustering

granularity, we are more likely to have a smaller rc but a larger
1
L . A balance between these two parts is needed to minimize

the overall computations.

Adaptive deep reuse exposes the clustering granularity as

a user-definable parameter. Its default value is the channel

size of the corresponding activation map, but users can set

it differently to attain a desired cost-benefit trade-off.

C. Overall Computation Complexity

Now taking everything into consideration, the overall com-

putation complexity of using LSH clustering method on sub-
vectors without cluster reuse is

Cf = O((
H

M
+ rc +

1

L
) ·N ·K ·M). (5)

If using cluster reuse, the complexity becomes

Cf,cr = O((
H

M
+ (1−R) · rc + 1

L
) ·N ·K ·M). (6)

The expected execution time is proportional to the computation

complexities.

IV. REUSE OF SIMILARITY DETECTION RESULTS FOR

BACKWARD PROPAGATION

The previous section describes how to use LSH to detect

similarities among neuron vectors in the forward propagation.

The other part of the CNN training is the backward propaga-

tion. The backward propagation accounts for around 2/3 of the

computations for each convolutional layer as shown in Section

II. Speeding up backward propagation is hence essential for

accelerating the CNN training.

To apply adaptive deep reuse to the backward propagation,

a question we need to answer is whether we can reuse the

similarity detection results from the forward propagation. This

question arises because of two concerns:

• The neuron vector similarity based computation reuse on

the forward propagation already introduces approxima-

tion errors to the CNN training process. If we apply LSH

to the backward propagation again, it would introduce

even more approximation errors, which may make it

harder to recover the original training accuracy.

• The LSH clustering method itself introduces computation

overhead. As shown in Section II, the main computation

of the backward pass includes two matrix multiplications.

Applying LSH twice for these two matrix multiplications

will bring even more overhead.

A close examination of the computations of backward pass

shows that the clustering results attained in the forward pass

could be applied directly for computing the weights gradient

∇W and the deltas of the inputs δx. The remaining part of

this section explains how it works.
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Figure 4. An illustration of the reuse scheme on the forward and backward propagation. (b) and (c) show how to reuse the similarity results found in the
forward propagation to compute the weight gradient and the delta of the input.

A. Weight Gradient

Let L be the loss function. The delta of the output is δy =
∂L
∂y , which has a dimension of N ×M . The centroid matrix

of the input obtained from the forward propagation is xc as

shown in Figure 4 (a). The weight gradient is computed using

Equation 2. Therefore, we have

∂L
∂Wij

=
N∑

k=1

xikδykj =

|C|∑
l=1

xil

∑
k∈l

δykj . (7)

For each cluster l, where l = 1, . . . , |C|, let

δ�yl,s =
∑
k∈l

δ�yk (8)

to represent the resulting vector of adding the values of all

corresponding row vectors in δy. All the summed vectors

δ�yl,s form a matrix δyc,s as shown in Figure 4 (b). Then

the previous formula becomes

∂L
∂W

= xT · δy = xT
c · δyc,s, (9)

where δyc,s has a dimension of |C| ×M .

Figure 5 gives an illustration of calculating the weight

gradient when clustering on sub-vectors with length L = K/2.

First, the input matrix x is divided into two sub-matrices,

denoted as x1 and x2. The centroid matrices of each input sub-

matrices are xc,1 and xc,2. The corresponding weight gradient

matrix can also be splitted into two blocks ∇W1 and ∇W2.

Second, we compute the corresponding δyc,1,s and δyc,2,s

according to Equation 8. Finally, for each block, the weight

gradient matrix is computed separately as

∂L
∂WI

= xT
I · δy = xT

c,I · δyc,I,s. (10)

Here I = 1, 2 are the block IDs.

Computation Complexity: If using the whole row vector

for clustering, the computation complexity of calculating δyc,s

is O((N − |C|) ·M) and the complexity of computing xT
c ·

δyc,s is O(K · |C| ·M). Combining them gives us the overall

complexity of O((1 − rc) · N ·M + rc · N · K ·M), where

rc = |C|
N is the remaining ratio. Given a sub-vector length

of L, the average computation complexity of calculating the

weight gradient using the forward pass clustering results is

Cb,w = O(

K/L∑
I=1

(N − |CI |) ·M + L · |CI | ·M)) (11)

= O((
1− rc
L

+ rc) ·N ·K ·M), (12)

here, for simplicity, we use rc to represent the averaged

remaining ratio across all sub-matrices of x.

B. Delta of the Input

Let l be the cluster ID, where l = 1, . . . , |C| and Nl be the

number of vectors in cluster l. To compute the delta of the

input, We first point out that for all i ∈ l, xi = xl. Therefore,

∂L
∂xl,j

=
1

Nl

∑
i∈l

∂L
∂xi,j

∂xi,j

∂xl,j
=

1

Nl

∑
i∈l

∂L
∂xi,j

. (13)

Now we have

∂L
∂xl,j

=
1

Nl

∑
i∈l

(

M∑
k=1

δyik ·Wkj) (14)

=

M∑
k=1

(
1

Nl

∑
i∈l

δyik) ·Wkj . (15)
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Figure 5. An illustration of calculating the weight gradient when clustering
on sub-vectors. The length of each sub-vector is L = K/2 where K is the
size of a weight kernel.
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Figure 6. An illustration of calculating the delta of the input x when clustering
on sub-vectors. The length of each sub-vector is L = K/2 where K is the
size of a weight kernel.

Let δyl,k,sa = 1
Nl

∑
i∈l δyik, the formula becomes

∂L
∂xl,j

=
M∑
k=1

δyl,k,sa ·Wkj . (16)

Therefore,
∂L
∂xc

= δyc,sa ·WT , (17)

where calculating δyc,sa is based on the calculation of δyc,s

for weight gradient computation. The gradient of the centroid

is then used for all the neuron vectors in the same cluster.

When clustering over sub-vectors, as shown in Figure 6,

both δx and W are divided into two sub-matrices. They are

δx1, δx2 and W1, W2. The sub-matrices of the input delta are

computed as

δxc,I = δyc,I,sa ·WT
I . (18)

Computation Complexity: When clustering over the row

vectors of the input, as shown in Figure 4 (c), the computation

complexity is O(|C| ·M · K). When using sub-vectors, the

complexity becomes

Cb,i = O(

K/L∑
I=1

|CI | ·M · L)) (19)

= O(rc ·N ·K ·M), (20)

where rc is again the averaged remaining ratio across all sub-

matrices of x.

Using Equation 10 and Equation 18, we could directly use

the clustering results attained in the forward propagation to

compute the weight gradient and input delta. It is easy to see

that when clustering over sub-vectors, for each sub-matrix of

δy, we need to compute multiple copies of δyc,s. Grouping

these output deltas introduces extra overhead. Therefore, even

though smaller granularities could lead to better clustering

results, it also brings larger computation overhead. It again

leads to a trade-off between the reuse-caused accuracy loss

and computation overhead.

V. ADAPTIVE DEEP REUSE FOR TRAINING

This section gives a discussion on how to adaptively adjust

the clustering designs for different training stages. With these

adaptive adjustment, we could leverage the similarities for

CNN training more efficiently and achieve more computation

savings.

Different CNN training stages have different degrees of

tolerance of precision relaxation. Usually at early training

iterations, since the model is very rough, the training of the

model is hence less sensitive to approximation errors than in

later stages. In later training stages when the model gets close

to convergence, the model is well learned. A small change of

the input matrix may lead to substantial errors in the model

updates, causing the training slow to converge. Therefore, the

basic idea of adaptive deep reuse is to be more aggressive

on computation reuse in early stages and adjust the clustering

parameters gradually so that we have less computation reuse

but better precision in later stages.

There are three clustering parameters to adjust given the

description in Section III. They are the clustering granularity

(the sub-vector length L), the number of hashing functions (H)

and the flag of cluster reuse (CR, CR = 1 for turning on the

cluster reuse). To study how these clustering parameters affect

the strength of reuse and the reuse-caused accuracy loss, we

experiment with different combination of parameters and gain

the following observations (the detailed experiment results is

shown in Section VI):

• When H and CR stay unchanged, a smaller granularity

(smaller L) always leads to smaller reuse-caused accuracy

loss.
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• When L and CR stay unchanged, more hashing functions

(larger H) gives smaller reuse-caused accuracy loss.

Meanwhile, a larger H gives a larger number of clusters,

thus a larger rc.

• Assume that center reuse is not turned on (CR = 0).

When L is large, H affects the reuse-caused accuracy

loss and rc more than L does. When L is small, the

change of L affects the reuse-caused accuracy loss and

rc more than H does.

• The convolutional layers that are close to the output

layer could use larger L and smaller H while achieving

the same reuse-caused accuracy loss comparing to the

convolutional layers that are close to the input images.

• In the selection of an appropriate combination of L
and H , turning on the cluster reuse flag (CR = 1)

always reduces the remaining ratio rc. However, it also

introduces more errors and larger reuse-caused accuracy

loss.

Given these observations, we propose two adaptive strate-

gies. The first one adjusts the combination of clustering

granularity and the number of hashing functions. It uses large

L and small H at the beginning of the training process. In

theory, this setting may lead to large amounts of computation

savings but also large clusters and hence approximation errors.

As the model learns from the input images, this strategy

gradually decreases the value of L and increases H . The reuse

becomes less aggressive, computation savings become less,

but the perturbance to the learning quality also decreases. The

second strategy is about clustering scopes. It sets the cluster

reuse flag CR to either 0 or 1 for different training stages.

A. Strategy of Adjusting L and H

To make this strategy work effectively, there are several

questions to be answered. We list these questions and our

solutions as follows.

a) How to determine the ranges of L and H we are going
to use during the training?

At the beginning of CNN training, the adaptive strategy

needs to be more aggressive in order to save more computa-

tions when the training process could tolerate large precision

relaxation. Therefore, we should use the largest L and the

smallest H for the initial setting. At the end of the training,

we need to have little reuse-caused accuracy loss. Thus we use

the smallest L and the largest H at this stage. We empirically

set the ranges of L and H based on the following policies:

Policy 1: For each layer, set the lower bound of L as

Lmin = kw and the upper bound as Lmax = �√Ic	 · kw.

kw is the width of the weight kernel and Ic is the number of

input channels.

Amendment 1: For layers other than the first convolutional

layer, if kw is very small (e.g. 3), and kw · kw < 10, set

Lmin = kw · kw.

Policy 2: Given the observation that the remaining ratio rc
is always larger than 0.01, we set the lower bound of H by

finding the minimum H that 2Hmin > 0.01N and the upper

bound of H by 2Hmax < N .

Given these two policies, the actual ranges of L and H are

determined by the size of a convolutional layer. Therefore,

even at the same training stage, different convolutional layers

may have different ranges of L and H.

b) When switching from one combination to the other, how
to decide the combination of L and H to use next?

There are two factors that affect the choice of the clustering

parameters. One is the expected computation time, the other is

the corresponding reuse-caused accuracy loss. When switching

from one set of parameters to the other, we always expect to

choose the one that gives the minimum expected execution

time and the smallest reuse-caused accuracy loss.

Because the expected computation time is proportional to

the computation complexity, Equations 5, 10 and 18 could help

us determine the expected computation time E(t). Since the

similarity detection only happens in the forward propagation,

we only use Equation 5 at this stage. We have

Ef (t) ∼ (
H

M
+ rc +

1

L
). (21)

Given {L1, H1}, if we only change the clustering granularity

from L1 to L2, the change of the expected computation time

would be

ΔEf (t, {L1, H1} → {L2, H1}) = 1

L2
− 1

L1
. (22)

On the other hand, if we only change the number of hashing

functions from H1 to H2, we have

ΔEf (t, {L1, H1} → {L1, H2}) = H2 −H1

M
. (23)

With Equations 22 and 23 and the ranges of L and H , we can

place all possible sets of {L,H} into an ordered candidate list

[{L,H}] based on the following policy:

Policy 3: Given the ranges of L and H , create two lists

[L] and [H], where [L] is sorted with an decreasing order

and [H] is sorted with an ascending order. After using the

parameter setting of {Li, Hj}, the next possible setting is

either {Li+1, Hj} or {Li, Hj+1}. Putting the one that gives a

smaller ΔE(t) according to Equation 22 and Equation 23 as

the next candidate into [{L,H}].
This is an offline process and it gives the candidates for

runtime examination. The runtime selection of the parameters

follows the following strategy. When finishing training with

the current set of parameters {Lcur, Hcur} = {Li, Hi}, where

i is the position of {Lcur, Hcur} in the candidate list, the

strategy runs inference on a batch of inputs with {Lcur, Hcur}
as the parameters to get an accuracy value Acur. It then

applies {Li+1, Hi+1} to the same batch of inputs for inference

and get another accuracy Ai+1. It selects the next candidate

{Li+1, Hi+1} to use as {Lcur+1, Hcur+1} for the next stage

based on the following conditions:

Amendment 3.1: When the training accuracy is less

than 0.5, if Ai+1/Acur ≥ 1.5, {Li+1, Hi+1} is chosen

as {Lcur+1, Hcur+1}. Otherwise, apply the same checking

process for the next candidate parameter set {Li+2, Hi+2}.
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Amendment 3.2: When the training accuracy is larger

than 0.5, if Ai+1 − Acur ≥ 0.1, {Li+1, Hi+1} is chosen as

{Lcur+1, Hcur+1}. Otherwise, check {Li+2, Hi+2}.
Amendment 3.3: If all settings after {Li, Hi} cannot

satisfy the conditions in the previous two amendments, we

simply chose {Li+1, Hi+1} as {Lcur+1, Hcur+1} as long as

Ai+1/Acur ≥ 1.1. If Ai+1/Acur < 1.1, skip this set of

parameters and go to the next one.

c) how to determine when to switch the clustering parame-
ters?

Given a set of {Lcur, Hcur}, we train the network until the

loss value stops decreasing. Then we begin to find the next

set of parameters to continue training the network.

B. Strategy Based on Cluster Reuse

This second strategy is much simpler than the first one. It

only adjusts the decision on turning on or off cluster reuse.

We start the training with cluster reuse. When the loss value

stops dropping, we set CR = 0 and continue training without

cluster reuse. It leaves L and H unchanged; they are set as

certain manually tuned values (more details in Section VI-B)

and stay unchanged throughout the training process.

VI. EVALUATION

To validate the hypothesis on neuron vector similarity and to

evaluate the efficacy of the adaptive deep reuse, we experiment

with three different networks: CifarNet, AlexNet [16] and

VGG-19 [17]. Table II gives the details of the networks and

datasets. These three networks have a range of sizes and

complexities. The number of convolutional layers ranges from

2 to 16. The first network works on small images of size

32 × 32 while the other two work on images of 224 × 224.

For all the experiments, the input images are randomly shuffled

before being fed into the network.

The baseline network implementation we use to measure

the speedups comes from the slim model 1 in the TensorFlow

framework 2. We implement our adaptive deep reuse opti-

mization by incorporating the clustering and reuse strategies

into the TensorFlow code. Both the original and our optimized

CNNs automatically leverage the state-of-the-art GPU DNN

library cuDNN 3 and other libraries that TensorFlow uses in

default.

We use policy 1, policy 2 and amendment 1.1 in Section

V-A(a) to determine the ranges of adaptive deep reuse parame-

ters L and H for each convolutional layer. During the training,

we follow policy 3 and amendment 3.1, 3.2, 3.3 in Section

V-A(b) to determine how to change the values of L and H for

each convolutional layer. The same rules are applied to all the

two datasets and three networks in our experiments.

All the experiments are done on a machine with an Intel(R)

Xeon(R) CPU E5-1607 v2 and a GTX1080 GPU.

The metric we use to evaluate the influence on the CNN

from the clustering based reuse is reuse-caused accuracy loss.

1https://github.com/tensorflow/models/tree/master/research/slim
2https://github.com/tensorflow/tensorflow
3https://developer.nvidia.com/cudnn

As adaptive deep reuse uses the centroid of a cluster of neuron

vectors as the representative of other neuron vectors in the

same cluster in computations, there could be a loss on the

inference accuracy of the neural network compared to the

inference accuracy of the default network. This loss is referred

as the “reuse-caused accuracy loss”. If the resulting inference

accuracy is close to the original inference accuracy, the reuse-

caused accuracy loss is small. Then the corresponding cluster-

ing method, together with the set of parameters, is considered

to have given good clustering results.

In the remaining of this section, we first verify our assump-

tion of neuron vector similarity by applying the K-means clus-

tering method to the inputs neuron vectors on CNN inference.

This set of experiments takes a CNN model trained by the

default training method, and applies our optimization only to

the inference process. The results on the three networks show

similar trends, confirming that there are strong similarities

among neuron vectors across inputs when CNN runs on real-

world datasets. Details are discussed in Section VI-A.

We then apply LSH to CNN inference to study the relation-

ship between the clustering parameters, the remaining ratio

and the inference accuracy. Similarly, the experiments only

apply our optimization to the inference process. Section VI-B1

gives a more detailed discussion on these relations on all three

networks.

Finally, we evaluate the efficiency of different deep reuse

strategies in Section VI-B. This set of experiments applies our

technique to both the training and the inference processes.

A. Verification of Neuron Vector Similarity

Figure 7 shows the rc−accuracy relationships when k-

means clustering is applied to CifarNet. We use k-means

for this measurement because this slower clustering method

produces better clustering results and hence can more fully

expose the potential. The results on the three networks show

simliar trends. Figure 7(a) shows the result for the first convo-

lutional layer of CifarNet, while Figure 7(b) gives the result

on the third convolutional layer of AlexNet. The results of

two different scopes (single-input level and single-batch level)

are shown. The inference accuracy of the original CifarNet

is around 0.81 while the inference accuracy of the original

AlexNet is around 0.54.

We could see that, by grouping the row vectors into clusters

and reusing the computation results of the centroid vectors, we

can reach an accuracy close or equal to the original accuracy

with a relatively small remaining ratio rc. If only applying

k-means to the first convolutional layer of CifarNet, as shown

in Figure 7(a), the accuracy reaches 0.76 with rc = 0.5
when using single-input level clustering. As for the third

convolutional layer of AlexNet, the accuracy reaches close to

the original one with rc ∼ 0.5 for single-input level clustering

and rc ∼ 0.15 for single-batch level clustering (Figure 7(b)).

This observation verifies that there is a large amount of

similarities among neuron vectors, hence the potential for

computation savings.
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Table II
BENCHMARK NETWORKS

NETWORK DATASET # CONVLAYERS K M IMAGE ORDER IMAGE SIZE

CIFARNET CIFAR10 2 75 ∼ 1600 64 RANDOM 32× 32
ALEXNET IMAGENET 5 363 ∼ 3456 64 ∼ 384 RANDOM 224× 224
VGG-19 IMAGENET 16 27 ∼ 4068 64 ∼ 512 RANDOM 224× 224
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Figure 7. The rc−accuracy relationship of applying k-means clustering to
CifarNet and AlexNet. Two clustering scopes are used: the single-input-level
clustering and the single-batch-level clustering.

Comparing the curve of the single-batch level clustering and

that of the single-input level clustering, it is easy to see that,

with a larger clustering scope, the optimized network could

recover the original accuracy with a smaller rc. For the first

convolutional layer of CifarNet (Figure 7 (a)), the curve of the

single-batch level clustering are shorter than the single-input

level one because there are no data when rc exceeds 0.1 in

the single-batch case. The reason is that K-means clustering

at batch level requires a large amount of memory, causing

memory errors on the machine.

B. Efficiency of the Adaptive Strategies

This part reports the relationship among the clustering

parameters of LSH, the remaining ratio rc, and the inference

accuracy. It also reports the comparison between the com-

putation time savings of adaptive strategies and analyzes the

influence of adaptive deep reuse on CNN convergence rate.

Table III
COMPARISON OF ACCURACY BETWEEN INFERENCES WITH CLUSTER

REUSE (CR=1) AND WITHOUT CLUSTER REUSE (CR=0).

LAYER L H
ACCURACY

CR=0 CR=1

CONV1 5 15 0.813 0.799
CONV2 10 10 0.816 0.784

1) Relation between Clustering Parameters, Remaining Ra-
tio, and Inference Accuracy: There are three clustering param-

eters for LSH clustering: the sub-vector length L, the number

of hashing functions H and the flag of turning on cluster reuse

CR.

Figure 8 illustrates the rc−accuracy relationship of using

different sub-vector lengths and different numbers of hashing

functions. Each curve in the Figure corresponds to a sub-vector

length. For example, in Figure 8 (a), the length varies from 5

to 1600 for the second convolutional layer of CifarNet. Each

dot on the curve corresponds to a certain number of hashing

functions. In Figure 8 (a), it varies from 5 to 60.

The results show that LSH is effective in identifying the

neuron vector similarities. It can recover the original inference

accuracy with a very small remaining ratio rc. We can also

tell that with the same remaining ratio rc, a smaller sub-vector

length L tends to give higher accuracy. For a fixed sub-vector

length, a larger number of hashing functions are necessary to

provide a higher accuracy, which incurs large remaining ratio

rc and hence many remaining computations.

Table III shows the effects of cluster reuse. The results

are from the experiments performed on the two convolutional

layers of CifarNet. For each layer, the selected set of {L,H}
is the one that performs the best in the previous experiments

of studying the relation between clustering parameters and

the inference accuracy. Results in Table III show that, for the

optimal sets of {L,H}, using cluster reuse results in a lower

accuracy for both of the two convolutional layers. However,

based on our experiments result, cluster reuse helps remove

most of the computations when processing later batches. For

example, the reuse rate R increases from 0 to around 0.98 after

processing 20 batches when applying cluster reuse on CifarNet

[10]. It shows a trade-off between computation savings and

inference accuracy.

2) Comparison of Computation Time Savings between
Three Different Strategies: In this section, we compare the

computation savings of using three different strategies.
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Figure 8. The rc−accuracy relationship of applying LSH to CifarNet,
AlexNet and VGG-19. Each curve corresponds to a certain sub-vector length.
Each dot on a curve reflects the result of using a certain number of hashing
functions.

The first strategy uses a fixed set of clustering parameters

{L,H} and it doesn’t enable the cluster reuse. The {L,H}
set is the optimal one chosen from experiments result shown

in previous section. With this strategy, we could save up to

49% CNN training time.

The second strategy is described in Section V-A. It automat-

ically adjusts the parameter set {L,H} for different training

stages. It turns out that this strategy is very effective. For all

the three networks, it could save more than 60% training time.

The largest time saving is on AlexNet, which is 69%.

Comparing these two strategies, we find that the second one

is more effective, giving larger speedups. For the first strategy,

since it uses only one set of parameters, this set of {L,H}
must introduce little reuse-caused accuracy loss in order to

Table IV
END-TO-END FULL NETWORK SPEEDUPS

NETWORK
SAVINGS OF THE CNN TRAINING TIME

STRATEGY 1 STRATEGY 2 STRATEGY 3

CIFARNET 38% 63% 46%
ALEXNET 49% 69% 58%
VGG-19 45% 68% 54%

reach the same training accuracy as the original network does.

Therefore, the computation saving is limited. For the second

strategy, the initial set of {L,H} used at the beginning of

the training actually gives large reuse-caused accuracy loss.

However, it saves a huge amount of computations for the

early training iterations. After several training iterations, the

adjustment to {L,H} gradually leads to smaller reuse-caused

accuracy loss, but also less computation savings. Overall, the

computation savings for the whole training process is larger

than that of using the first strategy. This results in larger

savings of computation time. We also experimented with the

strategy of adjusting cluster reuse (Sec V-B); it is not as

effective as the second strategy as Table IV shows.

It is worth noting that the speedups from adaptive deep
reuse are significant, but not as significant as the computations

savings it brings. The reason is that the reuse could lead to

more epochs in training for reaching the same accuracy as the

default training does: 28K versus 24K iterations for CifarNet,

820K versus 700K for AlexNet, and 500K versus 400K for

VGG-19. The speedups we have reported have already taken

into consideration of these extra training epochs.

VII. RELATED WORK

Training DNN with SGD involves a large number of com-

putations for each training iteration and also many training

iterations to converge. Prior works have adopted two main

strategies to accelerate DNN training: 1) reducing the number

of computations per iteration such as stochastic depth to

remove some layers during training [18], randomized hashing

to reduce the number of multiplications [6], approximate com-

putations [19]; 2) reducing the number of iterations required

to converge such as large-batch data parallelism [20], batch

normalization to reduce internal covariate shift [21], impor-

tance sampling to reduce variance of gradient estimates [22],

[23], adaptive learning rate [24]. We focus on the first strategy

as our proposed adaptive deep reuse falls into this category.

Several recent works take advantage of the sparsity of

activation maps to reduce computation cost in the forward

and backward propagation. In [6], randomized hashing is

combined with adaptive dropout [25] to predict the important

neurons and conduct multiplications only for those important

ones. Another work [8] uses the sparsity of ReLUs to avoid

calculating zero-valued neurons. The most recent work [9]

uses random projection to predict important neurons. These

approaches usually require a high level of sparsity in activation

maps to achieve speedups.
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Approximate tensor operations are also able to speed up

DNN training. One way for approximation is to use low

precision. In [4], deep networks can be trained using only

16-bit wide fixed-point number representation using stochastic

rounding, and incur little to no degradation in the inference

accuracy. Speedups are also expected using mixed precision

training proposed in [5]. Another popular approximation is

to enforce a low-rank structure on the layers [2], [3]. These

methods are all different from ours and can potentially be

combined with adaptive deep reuse.

LSH, as a clustering method, has been used in some prior

CNN studies [26]–[28]. But their purposes of using LSH differ

from ours. For example, in the Scalable and Sustainable Deep

Learning work [26], the authors apply LSH to both the weight

vector and the input vector and find the collision between a

pair of weight and input vectors. In this way they estimate

the weight-input pairs that give the highest activation. In our

work, we use the collision of hashing results of neuron vectors

to figure out similarities among neuron vectors, and reuse the

computing results of the neuron vector-weight vector products

across similar neuron vectors to save computations.

VIII. CONCLUSION

This paper presents adaptive deep reuse as a technique to

reduce the computation cost of the CNN training process.

Experiments show that there is a large amount of similarities

existing among neuron vectors across the inputs of each con-

volutional layer. By identifying these similarities using LSH

in the forward prorogation and reusing the similarity results

in the backward propagation, adaptive deep reuse efficiently

leverages the similarities and enables deep computation reuses

between neuron vectors that are similar to each other. Adaptive
deep reuse also introduces adaptive strategies that adjust the

clustering parameters throughout the CNN training to strike a

good balance between computation savings and training errors.

Experiments show that adaptive deep reuse can save up to

69% training time while causing no accuracy loss to the final

training results.
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