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Abstract

Convolutional Neural Networks (CNN) are widely used for
Deep Learning tasks. CNN pruning is an important method
to adapt a large CNN model trained on general datasets
to fit a more specialized task or a smaller device. The key
challenge is on deciding which filters to remove in order to
maximize the quality of the pruned networks while satisfying
the constraints. It is time-consuming due to the enormous
configuration space and the slowness of CNN training.

The problem has drawn many efforts from the machine
learning field, which try to reduce the set of network config-
urations to explore. This work tackles the problem distinc-
tively from a programming systems perspective, trying to
speed up the evaluations of the remaining configurations
through computation reuse via a compiler-based framework.
We empirically uncover the existence of composability in the
training of a collection of pruned CNN models, and point out
the opportunities for computation reuse. We then propose
composability-based CNN pruning, and design a compression-
based algorithm to efficiently identify the set of CNN layers
to pre-train for maximizing their reuse benefits in CNN prun-
ing. We further develop a compiler-based framework named
Wootz, which, for an arbitrary CNN, automatically generates
code that builds a Teacher-Student scheme to materialize
composability-based pruning. Experiments show that net-
work pruning enabled by Wootz shortens the state-of-art
pruning process by up to 186X while producing significantly
improved pruning results.
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1 Introduction

As a major class of Deep Neural Networks (DNN), Convo-
lutional Neural Networks (CNN) are important for a broad
range of deep learning tasks, from face recognition [36], to
image classification [32], object detection [53], human pose
estimation [61], sentence classification [29], and even speech
recognition and time series data analysis [37]. The core of a
CNN usually consists of many convolutional layers, and most
computations at a layer are convolutions between its neuron
values and a set of filters on that layer. A filter consists of a
number of weights on synapses, as Figure 1 (a) illustrates.

CNN pruning is a method that reduces the size and com-
plexity of a CNN model by removing some parts, such as
weights or filters, of the CNN model and then retraining the
reduced model, as Figure 1 (b) illustrates. It is an important
approach to adapting large CNNs trained on general datasets
to meet the needs of more specialized tasks [60, 66]. An exam-
ple is to adapt a general image recognition network trained
on a general image set (e.g., ImageNet [54]) such that the
smaller CNN (after retraining) can accurately distinguish dif-
ferent bird species, dog breeds, or car models [41, 43, 47, 66].
Compared to designing a CNN from scratch for each specific
task, CNN pruning is an easier and more effective way to
achieve a high-quality network [15, 41, 47, 51, 60]. More-
over, CNN pruning is an important method for fitting a
CNN model on a device with limited storage or computing
power [16, 65].

The most commonly used CNN pruning is filter-level prun-
ing, which removes a set of unimportant filters from each
convolutional layer. The key problem for filter-level pruning
is how to determine the set of filters to remove from each
layer to meet users’ needs: The entire configuration space is
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Figure 1. CNN and CNN Pruning. Conv1 and Conv?2 are the first two consecutive convolutional layers in the CNN.

as large as 2/"! (W for the entire set of filters) and it often
takes hours to evaluate just one configuration (i.e., training
the pruned network and then testing it).

The problem is a major barrier for timely solution deliv-
ery in Artificial Intelligence (AI) product development. The
prior efforts have been, however, mostly from the machine
learning community [19, 25, 39, 43, 47]. They leverage DNN
algorithm-level knowledge to reduce the enormous configu-
ration space to a smaller space (called promising subspace)
that is likely to contain a good solution, and then evaluate
these remaining configurations to find the best.

Although these prior methods help mitigate the problem,
network pruning remains a time-consuming process. One
reason is that, despite their effectiveness, no prior techniques
can guarantee the inclusion of the desirable configuration in
a much reduced subspace. As a result, to decrease the risk
of missing the desirable configuration, practitioners often
end up with a still quite large subspace of network configu-
rations that takes days for many machines to explore. It is
also quite often true that modifications need to make to the
CNN models, datasets, or hardware settings throughout the
development process of an Al product; each of the changes
could make the result of a CNN pruning obsolete and call
for a rerun of the entire pruning process. Our conversations
with Al product developers indicate that the long pruning
process is one of the major hurdles for shortening the time
to market Al products.

This study distinctively examines the problem from the
programming systems perspective. Specifically, rather than
improving the attainment of promising subspace as all prior
work focuses on, we try to drastically speed up the eval-
uations of the remaining configurations in the promising
subspace through cross-network computation reuse via a
compiler-based framework, a direction complementary to
prior solutions. We achieve the goal through three-fold in-
novations.

First, we empirically uncover the existence of composabil-
ity in the training of a collection of pruned CNN models,
and reveal the opportunity that the composability creates for
saving computations in CNN pruning. The basic observation
that leads to this finding is that two CNN networks in the
promising subspace often differ in only some layers. In the
current CNN pruning methods, the two networks are both
trained from scratch and then tested for accuracy. A question
we ask is whether the training results of the common layers
can be reused across networks to save some training time.

More generally, we view the networks in a promising sub-
space as compositions of a set of building blocks (a block is a
sequence of CNN layers). The question is if we first pre-train
(some of) these building blocks and then assemble them into
the to-be-explored networks, can we shorten the evaluations
of these networks and the overall pruning process? Through
a set of experiments, we empirically validate the hypothe-
sis, based on which, we propose composability-based CNN
pruning to capture the idea of reusing pre-trained blocks for
pruning (§ 3).

Second, we propose a novel hierarchical compression-based
algorithm, which, for a given CNN and promising subspace,
efficiently identifies the set of blocks to pre-train to maximize
the benefits of computation reuse. We prove that identify-
ing the optimal set of blocks to pre-train is NP-hard. Our
proposed algorithm provides a linear-time heuristic solution
by applying Sequitur [49], a hierarchical compression algo-
rithm, to the CNN configurations in the promising subspace
(§5).

Finally, based on all those findings, we developed Wootz',
the first compiler-based framework that, for an arbitrary
CNN (in Caffe Prototxt format) and other inputs, automati-
cally generates TensorFlow code to build Teacher-Student
learning structures to materialize composability-based CNN
pruning (§ 4§ 6).

We evaluate the technique on a set of CNNs and datasets
with various target accuracies. For ResNet-50 and Inception-
V3, it shortens the pruning process by up to 186.7X and 30.2X
respectively. Meanwhile, the models it finds are significantly
more compact (up to 70% smaller) than those by the default
pruning scheme for the same target accuracy (§ 7).

2 Background on CNN Pruning

This section gives some background important for follow-
ing the rest of the paper. For a CNN with L convolutional
layers, let W; = {Wl.j } represent the set of filters on its i-th
convolutional layer, and W denote the entire set of filters
(i.e., W = UL W;,.) For a given training dataset D, a typical
objective of CNN pruning is to find the smallest subset of
W, denoted as W', such that the accuracy reachable by the
pruned network f(W’, D) (after being re-trained) has a tol-
erable loss (a predefined constant &) from the accuracy by
the original network f(W, D). Besides space, the pruning

!The name is after Wootz steel, the legendary pioneering steel alloy devel-
oped in the 6th century BC; Wootz blades give the sharpest cuts.
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may seek for some other objectives, such as maximizing the
inference speed [67], or minimizing the amount of computa-
tions [19] or energy consumption [65].

The optimization problem is challenging because the en-
tire network configuration space is as large as 2!/" ! and it is
time-consuming to evaluate a configuration, which involves
the re-training of the pruned CNN. Previous work simplifies
the problem as identifying and removing the least important
filters. Many efficient methods on finding out the importance
of a filter have been proposed [20, 25, 39, 42, 43, 47].

The pruning problem then becomes to determine how
many least important filters to remove from each convolu-
tional layer. Let y; be the number of filters removed from
the i-th layer in a pruned CNN and y = (y1,- - ,yr)- Each
y specifies a configuration. The size of the configuration
space is still combinatorial, as large as HL-LZI T;|, where T} is
the number of choices y; can take.

Prior efforts have concentrated on how to reduce the con-
figuration space to a promising subspace [4, 19, 23]. But CNN
training is slow and the reduced space still often takes days
to explore. This work focuses on a complementary direction,
accelerating the examinations of the promising configura-
tions.

3 Composability-Based CNN Pruning: Idea
and Challenges

The fundamental reason for Wootz to produce large speedups
for CNN pruning is its effective capitalization of computation
reuse in CNN pruning, which is built on the composability in
CNN pruning empirically unveiled in this study. Two pruned
networks in a promising subspace often differ in only some
of the layers. The basic idea of composability-based CNN
pruning is to reuse the training results of the common layers
across the pruned networks. Although the idea may look
straightforward, to our best knowledge, no prior CNN prun-
ing work has employed such reuse, probably due to a series
of open questions and challenges:

o First, there are bi-directional data dependencies among
the layers of a CNN. In CNN training, for an input im-
age, there is a forward propagation that uses a lower
layer’s output, which is called activation maps, to
compute the activation maps of a higher layer; it is fol-
lowed by a backward propagation, which updates the
weights of a lower layer based on the errors computed
with the higher layer’s activation maps. As a result of
the bi-directional dependencies, even just one-layer
differences between two networks could cause very
different weights to be produced for a common (either
higher or lower) layer in the two networks. Therefore,
it remains unclear whether the training results of a
common layer could help with the training of different
networks.
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e Second, if a pre-trained layer could help, it is an open
question how to maximize the benefits. A pre-trained
sequence of consecutive layers may have a larger im-
pact than a single pre-trained layer does on the whole
network, but it may also take more time to produce
and has fewer chances to be reused. How to determine
which sets of layers or sequences of layers to pre-train
to maximize the gains has not been explored before.

e Third, how to pre-train just a piece of a CNN? The
standard CNN back propagation training algorithm
uses input labels as the ground truth to compute errors
of the current network configurations and adjust the
weights. If we just want to train a piece of a CNN, what
ground truth should we use? What software architec-
ture should be built to do the pre-training and do it
efficiently?

e Fourth, existing DNN frameworks support only the
standard DNN training and inference. Users have to
write code to do CNN pruning themselves, which is
already complicated for general programmers. It would
add even more challenges to ask them to additionally
write the code to pre-train CNN pieces, and then reuse
the results during the evaluations of the networks.

For the first question, we conduct a series of experiments
on 16 large CNNs (four popular CNN models trained on four
datasets). Section 7.2 reports the details; here we just state
the key observations. Pre-trained layers bring a network to a
much improved starting setting, making the initial accuracies
of the network 50-90% higher than the network without pre-
trained layers. That leads to 30-100% savings of the training
time of the network. Moreover, it helps the network converge
to a significantly higher level of accuracy (by 1%-4%). These
findings empirically confirm the potential of composability-
based CNN pruning.

To effectively materialize the potential, we have to address
the other three challenges. Wootz offers the solution.

4 Overview of Wootz Framework

This section gives an overview of Wootz. Wootz is a software
framework that automatically enables composability-based
CNN pruning. As Figure 2 shows, its input has four parts:

e The to-be-pruned CNN model, written in Caffe Pro-
totxt (with a minor extension), which is a user-friendly
text format (from Caffe) for CNN model specifica-
tions [27].

o The promising subspace that contains the set of pruned
networks configurations worth exploring, following
the format in Figure 3 (a). The subspace may come
from the user or some third-party tools that reduce
the configuration space for CNN pruning [4, 19, 23].
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Figure 2. Overview of Wootz Framework.

""" An example of a promising subspace specification that contains two
configurations. Each number is a pruning rate for a convolutional
layer. For example, the first configuration means the first and third
layers are pruned with pruning rate 0.3, the second and fourth layers
are not pruned. "'

configs=[[0.3, 0, 0.3, 0], [0.5, 0, 0.3, 0]]

""" The configurations should be either a Numpy array or a python list
that can be serialized using Pickle as below. Users only need to
provide configs_path to the compiler. "'

pickle.dump(configs, open(configs_path, "wb™"))

(a) Promising subspace specifications.

# Format:
[min, max] [ModelSize, Accuracy]
constraint [ModelSize, Accuracy] [<, >, <=, <=] [Value]

# Example:
min ModelSize
constraint Accuracy > 0.8

(b) Pruning objectives specifications.

Figure 3. Formats for the specifications of promising sub-
spaces (a) and pruning objectives (b).

o The dataset for training and testing, along with some
meta data on the training (e.g., learning rates, max-
imum training steps), following the format used in
Caffe Solver Prototxt [1].

o The objectives of the CNN pruning, including the con-
straints on model size or accuracy, following the for-
mat shown in Figure 3 (b).

The Wootz framework consists of four main components
as shown in Figure 2. (1) The hierarchical tuning block iden-
tifier tries to define the set of tuning blocks. A tuning block
is a sequence of pruned consecutive CNN layers taken as
a unit for pre-training. Suitable definitions of tuning blocks
help maximize reuse while minimizing the pre-training over-
head. (2) From the given CNN model specified in Prototxt,
the Wootz compiler generates a multiplexing model, which is
a function written in TensorFlow that, when invoked, speci-
fies the structure of the full to-be-pruned CNN model, the
network structure—which implements a Teacher-Student
scheme—for pre-training tuning blocks, or pruned networks
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assembled with pre-trained tuning blocks, depending on the
arguments the function receives. (3) The pre-training scripts
are some generic Python functions that, when run, pre-train
each tuning block based on the outputs from the first two
components of Wootz. (4) The final component, exploration
scripts, explores the promising pruned networks assembled
with the pre-trained tuning blocks. The exploration of a net-
work includes first fine-tuning the entire network and then
testing it for accuracy. The exploration order is automati-
cally picked by the exploration scripts based on the pruning
objectives to produce the best network as early as possible.
Both the pre-training scripts and the exploration scripts can
run on one machine or multiple machines in a distributed
environment through MPL

Wootz is designed to help pruning methods that have their
promising subspace known at front. There are methods that
do not provide the subspace explicitly [68]. They, however,
still need to tune the pruning rate for each layer and the
exploration could also contain potentially avoidable compu-
tations. Extending Wootz to harvest those opportunities is a
direction worth future exploration.

Next, we explain the hierarchical tuning block identifier in
§ 5, and the other components in § 6.

5 Hierarchical Tuning Block Identifier

Composability-based CNN pruning faces a trade-off between
the pre-training cost and the time savings the pre-training
results bring. The tradeoff depends on the definitions of the
unit for pre-training, that is, the definition of tuning blocks. A
tuning block is a unit for pre-training; it consists of a sequence
of consecutive CNN layers pruned at certain rates. It can
have various sizes, depending on the number of CNN layers
it contains. The smaller it is, the less pre-training time it
takes and the more reuses it tends to have across networks,
but at the same time, its impact to the training time of a
network tends to be smaller.

So for a given promising subspace of networks, a ques-
tion for composability-based CNN pruning is how to define
the best sets of tuning blocks. The solution depends on the
appearing frequencies of each sequence of layers in the sub-
space, their pre-training times, and the impact of the pre-
training results on the training of the networks. For a clear
understanding of the problem and its complexity, we define
optimal tuning block definition problem as follows.

Optimal Tuning Block Definition Problem Let A be a
CNN consisting of L layers, represented as A;- Ay As-. . .- AL,
where - stands for layer stacking and A; stands for the i-th
layer (counting from input layer). C = {A®D, A®) K AN}
is a set of N networks that are derived from filter pruning of
A, where A™ represents the n-th derived network from A,
and Ai(") stands for the i-th layer of AW i=1,2,...,L
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Optimal tuning block definition problem is to come up with
a set of tuning blocks B = {By, By, ..., Bk} such that the
following two conditions are met:

1. Every Bi, k = 1,2,--- ,K, is part of a network in C—
that is, V By, 3 A n e {1,2,---, N}, such that By =
Al(n) 'Al+1(n) . -A1+bk_1(n), 1 <1< L-bg+1,where

b is the number of layers contained in By.
2. Bis an optimal choice—that is, arg min(Zf:l T(Bg) +

B

22]:1 T(A™B))), where, T(By) is the time taken to pre-
train block By, and T(A"™P)) is the time taken to train
AB) to reach the accuracy objective?; A®B) i the
blocked-trained version of A™ with B as the tuning
blocks.

A restricted version of the problem is that only a prede-
fined set of pruning rates (e.g., {30%, 50%, 70%}) are used when
pruning a layer in A to produce the set of pruned networks
in C—which is a common practice in filter pruning.

Even this restricted version is NP-hard, provable through a
reduction of the problem to the classic knapsack problem [22]
(detailed proof omitted for sake of space.) A polynomial-time
solution is hence in general hard to find, if ever possible. The
NP-hardness motivates our design of a heuristic algorithm,
which does not aim to find the optimal solution but to come
up with a suitable solution efficiently. The algorithm does not
use the training time as an explicit objective to optimize but
focuses on layer reuse. It is a hierarchical compression-based
algorithm, described next.

Hierarchical Compression-Based Algorithm Our algo-
rithm leverages Sequitur [49] to efficiently identify the fre-
quent sequences of pruned layers in the network collection
C. As a linear-time hierarchical compression algorithm, Se-
quitur infers a hierarchical structure from a sequence of
discrete symbols. For a given sequence of symbols, it derives
a context-free grammar (CFG), with each rule in the CFG
reducing a repeatedly appearing string into a single rule ID.
Figure 4 gives an example. Its top part shows the concate-
nated sequence of layers of four networks pruned at various
rates; the subscripts of the numbers indicate the pruning
rate, that is, the fraction of the least important filters of a
layer that are removed. The lower part in Figure 4 shows the
CFG produced by Sequitur on the string. A full expansion of
rule 70 would give the original string. The result can also be
represented as a Directed Acyclic Graph (DAG) as the right
graph in Figure 4 shows with each node corresponding to
one rule.

Applying Sequitur to the concatenated sequence of all net-
works in the promising subspace, our hierarchical compression-
based algorithm gets the corresponding CFG and the DAG.
Let R be the collection of all the rules in the CFG, and S
be the solution to the tuning block identification problem

2In our framework, T(x) is not statically known or approximated, but
instead explicitly computed (via training) for each x (i. e, By or A(n.B)),
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Notations:
N : the Nth convolution module pruned by a d fraction of filters
0 : the ending marker of the first network sequence

Four networks concatenated into a string
1(32(33(394(550 @ 1(32(33(54(550) @ 1(52(33(3)4(550) ® 102(33(54(550) @
CFG by Sequitur on the above string

Freq. RuleID Rule body
1 ro rir2®rlr3®@r6r8r2®r7r8r3®

5
2 rlt s r5r8

2 rZ -»r9r4

2 r3 - rlo r4

4 r4 - rll ri2

2 r5 > 13

1 re - 1cs)

1 r7 s 1w

4 r8 s 23

2 r9 - 33

2 rld - 3cs

4 rll - 4¢s L4 v v 5(0)
4 ri2 -5

Figure 4. Sequitur applies to a concatenated sequence of
layers of four networks pruned at rates: 0%, 30%, 50%.

which is initially empty. Our algorithm then heuristically
fills S with subsequences of CNN layers (represented as rules
in the CFG) that are worth pre-training.

It does it based on the appearing frequencies of the rules
in the promising subspace and their sizes (i.e., the number
of layers a rule contains). It employs two heuristics: (1) A
rule cannot be put into S if it appears in only one network
(i.e., its appearing frequency is one); (2) a rule is preferred
over its children rules only if that rule appears as often as
its most frequently appearing descendant.

The first heuristic is to ensure that the pre-training result
of the sequence can benefit more than one network. The
second heuristic is based on the following observation: A
pre-trained sequence typically has a larger impact than its
subsequences all together have on the quality of a network;
however, the extra benefits are usually modest. For instance,
a ResNet CNN network assembled from 4-block long pre-
trained sequences has an initial accuracy of 0.716, 3.1% higher
than the same network but assembled from 1-block long pre-
trained sequences. The higher initial accuracy helps save
extra training steps (epochs) for the network, but the saving
is limited (up to 20% of the overall training time). Moreover,
a longer sequence usually has a lower chance to be reused.
For these reasons, we employ the aforementioned heuristics
to help keep S small and hence the pre-training overhead
low while still achieving a good number of reuses.

Specifically, the algorithm takes a post-order (children
before parent) traversal of the DAG that Sequitur produces.
(Before that, all edges between two nodes on the DAG are
combined into one edge.) At a node, it checks its frequency. If
it is greater than one, it checks whether its frequency equals
the largest frequency of its children. If so, it marks itself as a
potential tuning block, unmarks its children, and continues
the traversal. Otherwise, it puts a "dead-end" mark on itself,
indicating that it is not worth going further up in the DAG
from this node. When the traversal reaches the root of the
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DAG or has no path to continue, the algorithm puts all the
potential tuning blocks into S as the solution and terminates.

Note that a side product from the process is a composite
vector for each network in the promising subspace. As a
tuning block is put into S, the algorithm, by referencing the
CFG produced by Sequitur, records the ID of the tuning block
in the composite vectors of the networks that can use the block.
Composite vectors will be used in the global fine-tuning phase
as described in the next section.

The hierarchical compression-based algorithm is designed
to be simple and efficient. More detailed modeling of the time
savings and pre-training cost of each sequence for various
CNNss could potentially help yield better definitions of tuning
blocks, but it would add significant complexities and runtime
overhead. Our exploration in § 7.3 shows that the hierarchical
compression-based algorithm gives a reasonable trade-off.

6 Mechanisms for Composability-Based
Pruning and Wootz Compiler

The core operations in Composability-based CNN pruning in-
cludes pre-training of tuning blocks, and global fine-tuning
of networks assembled with the pre-trained blocks. This
section first explains the mechanisms we have designed to
support these operations efficiently, and then describes the
implementation of Wootz compiler and scripts that automat-
ically materializes the mechanisms for an arbitrary CNN.

6.1 Mechanisms

Pre-Training of Tuning Blocks The standard CNN back
propagation training algorithm uses input labels as the ground
truth to compute errors of the current network and adjusts
the weights iteratively. To train a tuning block, the first ques-
tion is what ground truth to use to compute errors. Inspired
by Teacher-Student networks [5, 7, 21], we adopt a similar
Teacher-Student mechanism to address the problem.

We construct a network structure that contains both the
pruned block to pre-train and the original full CNN model.
They are put side by side as shown in Figure 5 (a) with the
input to the counterpart of the tuning block in the full model
also flowing into the pruned tuning block as its input, and the
output activation map of the counterpart block flowing into
the pruned tuning block as the "ground truth" of its output.
When the standard back propagation algorithm is applied to
the tuning block in this network structure, it effectively mini-
mizes the reconstruction error between the output activation
maps from the pruned tuning block and the ones from its
unpruned counterpart in the full network. (In CNN pruning,
the full model has typically already been trained beforehand
to perform well on the datasets of interest.) This design essen-
tially uses the full model as the "teacher" to train the pruned
tuning blocks. Let O and O; be the vectorized output acti-
vation maps from the unpruned and pruned tuning block,
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and W/ be the weights in the pruned tuning block. The opti-
mization objective in this design is: miny; @ |0k = O, lI2.
Only the parameters in the pruned tuning block are updated
in this phase to ensure the pre-trained blocks are reusable.
This Teacher-Student design has three appealing proper-
ties. First, it addresses the missing “ground truth” problem
for tuning block pre-training. Second, as the full CNN model
runs along with the pre-training of the tuning blocks, it pro-
vides the inputs and "ground truth" for the tuning blocks on
the fly; there is no need to save to storage the activation maps
which can be space-consuming considering the large number
of input images for training a CNN. Third, the structure is
friendly for concurrently pre-training multiple tuning blocks.
As Figure 5 (b) shows, connections can be added between the
full model and multiple pruned blocks; the pre-training of
these blocks can then happen in one run, and the activation
maps produced by a block in the full model can be seamlessly
reused across the pre-training of multiple pruned blocks.

Global Fine-Tuning The local training phase outputs a
bag of pre-trained pruned tuning blocks, as shown in Fig-
ure 5 (c) (tuning blocks in the original network could also be
included). At the beginning of the global fine-tuning phase is
an assembly step, which, logically, assembles these training
blocks into each of the networks in the promising subspace.
Physically, this step just needs to initialize the pruned net-
works in the promising subspace with the weights in the
corresponding tuning blocks. We call the resulting network a
block-trained network. Recall that one of the side products of
the tuning block identification step is a composite vector for
each network which records the tuning blocks the network
can use; these vectors are used in this assembly step. Fig-
ure 5 (d) gives a conceptual illustration; three networks are
assembled with different sets of pre-trained tuning blocks.
As a pruned block with only a subset of parameters has a
smaller model capacity, a global fine-tuning step is required to
further recover the accuracy performance of a block-trained
network. This step runs the standard CNN training on the
block-trained networks. All the parameters in the networks
are updated during the training. Compared with training a
default pruned network, fine-tuning a block-trained network
usually takes much less training time as the network starts
with a much better set of parameter values as shown in § 7.

6.2 Wootz Compiler and Scripts

Wootz compiler and scripts offer an automatic way to ma-
terialize the mechanisms for an arbitrary CNN model. The
proposed method is not restricted to a particular DNN frame-
work, though we demonstrate its ability using TensorFlow.

We first provide brief background on TensorFlow [2] that
is closely relevant to this part. TensorFlow offers a set of
APIs for defining, training, and evaluating a CNN. To specify
the structure of a CNN, one needs to call APIs in a Python
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Figure 5. lllustration of composability-based network prun-
ing. Eclipses are pruned tuning blocks; rectangles are original
tuning blocks; diamonds refer to the activation map recon-
struction error. Different colors of pruned tuning blocks
correspond to different pruning options.

script, which arranges a series of operations into a computa-
tional graph. In a TensorFlow computational graph, nodes
are operations that consume and produce tensors, and edges
are tensors that represent values flowing through the graph.
CNN model parameters are held in TensorFlow variables,
which represent tensors whose values can be changed by
operations. Because a CNN model can have hundreds of
variables, it is a common practice to name variables in a
hierarchical way using variable scopes to avoid name clashes.
A popular option to store and reuse the parameters of CNN
model is TensorFlow checkpoints. Checkpoints are binary
files that map variable names to tensor values. The tensor
value of a variable can be restored from a checkpoint by
matching the variable name.

TensorFlow APIs with other assistant libraries (e.g., Slim [57])

offer conveniences for standard CNN model training and
testing, but not for CNN pruning, let alone composability-
based pruning. Asking a general programmer to implement
composability-based pruning in TensorFlow for each CNN
model would add tremendous burdens on the programmer.
She would need to write code to identify tuning blocks, cre-
ate TensorFlow code to implement the customized CNN
structures to pre-train each tuning block, generate check-
points, and use them when creating the block-trained CNN
networks for global fine-tuning.

Wootz compiler and scripts mitigate the difficulty by au-
tomating the process. The fundamental motivating observa-
tion is that the codes for two different CNN models follow
the same pattern. Differences are mostly on the code specify-
ing the structure of the CNN models (both the original and
the extended for pre-training and global fine tuning). The
idea is to build code templates and use the compiler to auto-
matically adapt the templates based on the specifications of
the models.

Multiplexing Model An important decision in our design
of Wootz is to take Prototxt as the format of an input to-
be-pruned CNN model. Because our tool has to derive code
for pre-training and fine-tuning of the pruned models, our
compiler would need to analyze the TensorFlow code from
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users, which could be written in various ways and complex
to analyze. Prototxt has a clean fixed format. It is easy for
programmers to write and simple for our compiler to analyze.

Given a to-be-pruned CNN model specified in Prototxt,
the compiler first generates the multiplexing model, which is
a piece of TensorFlow code defined as a Python function. It
is multiplexing in the sense that an invocation of the code
specifies the structure of the original CNN model, or the
structure for pre-training, or the global fine tuning model;
which of the three modes is used at an invocation of the
multiplexing model is determined by one of its input argu-
ments, mode_to_use. The multiplexing design allows easy
code reuse as the three modes share much common code for
model specifications. Another argument, prune_info, conveys
to the multiplexing model the pruning information, includ-
ing the set of tuning blocks to pre-train in this invocation
and their pruning rates.

The compiler-based code generation needs to provide
mainly two-fold support. It needs to map CNN model specifi-
cations in Prototxt to TensorFlow APIs. Our implementation,
specifically, generates calls to TensorFlow-Slim API [55] to
add various CNN layers based on the parsing results of the
Prototxt specifications. The other support is to generate the
code to also specify the derived network structure for pre-
training each tuning block contained in prune_info. Note
that the layers contained in a tuning block are the same as a
section of the full model except for the number of filters in
the layers and the connections flowing into the block. The
compiler hence emits code for specifying each of the CNN
layers again, but with connections flowing from the full net-
work, and sets the "depth" argument of the layer-adding API
call (a TensorFlow-Slim API [55]) with the info retrieved
from prune_info such that the layer’s filters can change with
prune_info at different calls of the multiplexing model. In ad-
dition, the compiler encloses the code with condition checks
to determine, based on prune_info, at an invocation of the
multiplexing model whether the layer should be actually
added into the network for pre-training. The code genera-
tion for the global fine-tuning is similar but simpler. In such
a form, the generated multiplexing model is adaptive to the
needs of different modes and the various pruning settings.

Once the multiplexing model is generated, it is registered
at the nets factory in Slim Model Library [57] with its unique
model name. The nets factory is part of the functional pro-
gramming Slim Model Library is based on. It contains a dic-
tionary mapping a model name to its corresponding model
function for easy retrieval and use of the models in other
programs.

Pre-Training Scripts The pre-training scripts contain a
generic pre-training Python code and a wrapper that is
adapted from a Python template by the Wootz Compiler
to the to-be-pruned CNN model and meta data. The pre-
training Python code retrieves the multiplexing model from
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nets factory based on the registered name, and repeatedly
invokes the model function with the appropriate arguments,
with each call generating one of the pre-train networks. After
defining the loss function, it launches a TensorFlow session
to run the pre-training process.

The wrapper calls the pre-training Python code with re-
quired arguments such as model name and the set of tuning
blocks to train. As the tuning blocks coexisting in a pruned
network cannot have overlapping layers, one pruned net-
work can only enable the training of a limited set of tuning
blocks. We design a simple algorithm to partition the entire
set of tuning blocks returned by the Hierarchical Tuning
Block Identifier into groups. The pre-training Python script
is called to train only one group at a time. The partition
algorithm is as follows:

Inputs: B {the entire set of tuning blocks}
Outputs: G {the set of groups of tuning blocks}
B.sort() {sort by the contained lowest conv layers}
G = {{B[o]}}
for b € B[1:] do
forg € Gdo
any([overlap(b, e) for e in g])? G.add({b}):g.add(b)

The meta data contains the training configurations such
as dataset name, dataset directory, learning rate, maximum
training steps and batch size for pre-training of tuning blocks.
The set of options to configure are predefined, similar to the
Caffe Solver Prototxt [1]. The compiler parses the meta data
and specifies those configurations in the wrapper.

Executing the wrapper produces pre-trained tuning blocks
that are stored as TensorFlow checkpoints. The mapping
between the checkpoint files and trained tuning blocks are
also recorded for the model variable initialization in the
global fine-tuning phase. The pre-training script can run on
a single node or multiple nodes in parallel to concurrently
train multiple groups through MPL

Exploration Scripts Exploration scripts contain a generic
global fine-tuning Python code and a Python-based wrapper.
The global fine-tuning code invokes the multiplexing model
to generate the pruned network according to the configura-
tion to evaluate. It then initializes the network through the
checkpoints produced in the pre-train process and launches
a TensorFlow session to train the network.

In addition to feeding the global fine-tuning Python code
with required arguments (e.g. the configuration to evaluate),
the Python-based wrapper provides code to efficiently ex-
plore the promising subspace. The order of the exploration
is dynamically determined by the objective function.

The compiler first parses the file that specifies the objective
of pruning to get the metric that needs to be minimized
or maximized. The order of explorations is determined by
the corresponding MetricName. In case the MetricName is
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ModelSize, the best exploration order is to start from the
smallest model and proceed to larger ones. If the MetricName
is Accuracy, the best exploration order is the opposite order
as a larger model tends to give a higher accuracy.

To facilitate concurrent explorations on multiple machines,
the compiler generates a task assignment file based on the
order of explorations and the number of machines to use
specified by the user in the meta data. Let ¢ be the number of
configurations to evaluate and p be the number of machines
available, the i-th node will evaluate the i + p * j-th smallest
(or largest) model, where 0 < j < |¢/p].

7 Evaluations

We conduct a set of experiments to examine the efficacy
of Wootz. Our experiments are designed to answer the fol-
lowing major questions: 1) Whether pre-training the tuning
blocks of a CNN helps the training of that CNN reach a given
accuracy sooner? We refer to it as the composability hypoth-
esis as its validity is the prerequisite for the composability-
based CNN pruning to work. 2) How much benefits we could
get from composability-based CNN pruning on both the speed
and the quality of network pruning while counting the pre-
training overhead? 3) How much extra benefits we could get
from hierarchical tuning block identifier?

We first describe the experiment settings (datasets, learn-
ing rates, machines, etc.) in § 7.1, then report our experiment
results in § 7.2 and § 7.3 to answer each of the three questions.

7.1 Experiment Settings

Models and Datasets Our experiments use four popular
CNN models: ResNet-50 and ResNet-101, as representatives
of the Residual Network family [18], and Inception-V2 and
Inception-V3, as representatives of the Inception family [59].
They have 50, 101, 34, 48 layers respectively. These mod-
els represent a structural trend in CNN designs, in which,
several layers are encapsulated into a generic module of a
fixed structure—which we call convolution module—and a
network is built by stacking many such modules together.
Such CNN models are holding the state-of-the-art accuracy
in many challenging deep learning tasks. The structures of
these models are described in input Caffe Prototxt® files and
converted to the multiplexing models by the Wootz compiler.

For preparation, we adapt the four CNN models trained on
a general image dataset ImageNet [54] (ILSVRC 2012) to each
of four specific image classification tasks with the domain-
specific datasets, Flowers102 [50], CUB200 [63], Cars [31],
and Dogs [28]. It gives us 16 trained full CNN models. The
accuracy of the trained ResNets and Inceptions on the test
datasets are listed in columns Accuracy in Table 1. The four
datasets for CNN pruning are commonly used in fine-grained

3We add to Prototxt a new construct "module” for specifying the boundaries
of convolution modules.
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recognition [14, 24, 30, 47, 69], which is a typical usage sce-
nario of CNN pruning. Table 1 reports the statistics of the
four datasets, including the data size for training (Train),
the data size for testing (Test), and the number of classes
(Classes). For all experiments, network training is performed
on the training sets while accuracy results are reported on
the testing sets.

Baseline for Comparison In CNN pruning, the full CNN
model to prune has typically been already trained on the
datasets of interest. When filters in the CNN are pruned, a
new model with fewer filters is created, which inherits the re-
maining parameters of the affected layers and the unaffected
layers in the full model. The promising subspace consists of
such models. The baseline approach trains these models as
they are. Although there are prior studies on accelerating
CNN pruning, what they propose are all various ways to re-
duce the configuration space to a promising subspace. To the
best of our knowledge, when exploring the configurations
in the promising subspace, they all use the baseline approach.
As our method is the first for speeding up the exploration
of the promising space, we compare our results with those
from the baseline approach.

We refer to a pruned network in the baseline approach
a default network while the one initialized with pre-trained
tuning blocks in our method a block-trained network.

Promising Subspace The 16 trained CNNs contain up to
hundreds of convolutional layers. A typical practice is to
use the same pruning rate for the convolutional layers in
one convolution module. We adopt the same strategy. The
importance of a filter is determined by its {; norm as pre-
vious work [39] proposes. Following prior CNN pruning
practice [39, 43], the top layer of a convolution module is
kept unpruned; it helps ensure the dimension compatibility
of the module.

There are many ways to select the promising subspace,
i.e., the set of promising configurations worth evaluating.
Previous works select configurations either manually [39, 43]
or based on reinforcement learning with various rewards or
algorithm design [4, 19]. As that is orthogonal to the focus
of this work, to avoid bias from that factor, our experiment
forms the promising spaces through random sampling [6]
of the entire pruning space. A promising space contains
500 pruned networks, whose sizes follow a close-to-uniform
distribution. In the experiments, the pruning rate for a layer
can be one of T' = {30%, 50%, 70%}.

Objective of Pruning There are different pruning objec-
tives including minimizing model size, computational cost,
memory footprint or energy consumption. Even though an
objective of pruning affects the choice of the best config-
uration, all objectives require the evaluation of the set of
promising configurations. Our composability-based CNN
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Figure 6. Accuracy curves of the default and block-trained
networks on dataset CUB200. Each network has 70% least
important filters pruned at all convolution modules.

pruning aims at accelerating the training of a set of pruned
networks and thus can work with any objective of pruning.

For the demonstration purpose, we set the objective of
pruning as finding the smallest network (min ModelSize) that
meets a given accuracy threshold (Accuracy <= thr_acc). We
get a spectrum of thr_acc values by varying the accuracy
drop rate o from that of the full model from -0.02 to 0.08.
We include negative drop rates because it is possible that
pruning makes the model more accurate.

Meta Data on Training The meta data on the training
in both the baseline approach and our composability-based
approach are as follows. Pre-training of tuning blocks takes
10,000 steps for all ResNets, with a batch size 32, a fixed learn-
ing rate 0.2, and a weight decay 0.0001; it takes 20,000 steps
for all Inceptions, with batch size 32, a fixed learning rate
0.08, and a weight decay 0.0001. The global fine-tuning in the
composability-based approach and the network training in
the baseline approach uses the same training configurations:
max number of steps 30,000, batch size 32, weight decay
0.00001, fixed learning rate 0.001%.

All the experiments are performed with TensorFlow 1.3.0
on machines each equipped with a 16-core 2.2GHz AMD
Opteron 6274 (Interlagos) processor, 32 GB of RAM and an
NVIDIA K20X GPU with 6 GB of DDR5 memory. One net-
work is trained on one GPU.

7.2 Validation of the Composability Hypothesis

We first present empirical validations of the composability
hypothesis (i.e., pre-training tuning blocks helps CNN reach
an accuracy sooner) as its validity is the prerequisite for the
composability-based CNN pruning to work.

Table 2 reports the median of the initial and final accura-
cies of all 500 block-trained networks and their default coun-
terparts for each of the models on every dataset. The mean
is very close (less than 1%) to the median in all the settings.
In this experiment, the tuning blocks are simply the CNN
modules in each network. Overall, block-trained networks

4We experimented with other learning rates and dynamic decay schemes.
No single choice works best for all networks. We decided on 0.001 as it
gives the overall best results for the baseline approach.
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Table 1. Dataset statistics.

Dataset l Size ] Classes l Accuracy
| Total [ Train [ Test | | ResNet-50 | ResNet-101 [ Inception-V2 | Inception-V3 |
[ General [ ImageNet [54] [ 1,250,000 | 1,200,000 | 50,000 [ 1000 T 0.752 [ 0.764 [ 0.739 [ 0.780 |
Flowers102 [50] | 8,189 6,149 2,040 [ 102 0.973 0.975 0.972 0.968
Special | _CUB200 [63] 11,788 5,994 5794 | 200 0.770 0.789 0.746 0.760
P Cars [31] 16,185 8,144 8041 | 196 0.822 0845 0.789 0.801
Dogs [23] 20,580 12,000 8580 | 120 0.850 0.864 0.841 0.835

Table 2. Median accuracies of default networks (init, final)
and block-trained networks (init+, final+).

A
Models churacy Flowers102 | CUB200 | Cars | Dogs
ype
init 0.035 0.012 0.012 | 0.010
Tnit+ 0.926 0.662 0.690 | 0.735
ResNet-50 — T 0.962 0.707 | 0800 | 0.754
final+ 0.970 0.746 0.821 | 0.791
init 0.043 0.021 0.009 | 0.028
Tnit+ 0.932 0.693 0.663 | 0.733
ResNet-101 — o 0.963 0.741 0.832 | 0.785
final+ 0.977 0.767 0.844 | 0314
init 0.030 0.011 0.011 | 0.010
Inception-va | 0.881 0567 0.552 | 0.630
P final 0.960 0.705 0.785 | 0.732
final+ 0.966 0.725 0.806 | 0.771
init 0.029 0.011 0.009 | 0.012
Incentionv3 |1 0.866 0571 0542 | 0.563
P final 0.959 0711 0.796 | 0.728
final+ 0.965 0735 0.811 | 0.755
e default — full model *  default — fullmodel

block-trained

block-trained
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Figure 7. Accuracies of pruned networks of ResNet-50 after
training. The model size of full ResNet-50 is 25.6 million.

yield better final accuracies than default networks do with
one-third less training time.

To show details, the two graphs in Figure 6 give accuracy
curves attained during the trainings of one of the pruned net-
works in ResNet-50 and Inception-V3 respectively. Dataset
CUB200 is used. The initial accuracies (init) are close to zero
for the default version, while 53.4% and 40.5% for the block-
trained version (init+). Moreover, the default version gets
only 65.3% and 67.3% final accuracies (final) respectively,
while the block-trained version achieves 72.5% and 70.5% af-
ter only two-thirds of the training time. Results on other
pruned networks show a similar trend.

The results offer strong evidence for the composability
hypothesis, showing that pre-training the tuning blocks of a
CNN can indeed help the training of that CNN reach a given
accuracy sooner. The benefits do not come for free; overhead

is incurred by the pre-training of the tuning blocks. We next
report the performance of Wootz as a whole.

7.3 Results of Wootz

We first evaluate the performance of composability-based
network pruning and then report the extra benefits from the
hierarchical tuning blocks identifier.

Basic Benefits To measure the basic benefits from the
composability-based method, these experiments use every
convolution module in these networks as a tuning block. The
extra benefits from hierarchical tuning block identification
are reported later.

Figure 7 shows the final accuracies of all the 500 ResNet-50
variants trained with or without leveraging composability on
the Flower102 and CUB200 datasets. For reference, we also
plot the accuracies of the well-trained full ResNet-50 on the
two datasets. The block-trained network gives a clearly better
final accuracy overall, which echoes the results reported in
the previous subsection.

Table 3 reports the comparisons between the block-trained
version and the default version, in both speeds and network
sizes, at various levels of tolerable accuracy drop rates «
(negative means higher accuracy than the large network
gives). The results are collected when 1, 4, or 16 machines
are used for concurrent training for both the baseline and
our method (indicated by the "#nodes" column). The time
of the block-trained version already takes the pre-training
time of tuning blocks into account ("overhead" in Table 3
shows the percentage in overall time). For the objective of
pruning, the exploration order Wootz adopts is to start from
the smallest models and proceed to larger ones.

The results show that the composability-based method
avoids up to 99.6% of trial configurations and reduces the
evaluation time by up to 186X for ResNet-50; up to 96.7%
reduction and 30X speedups for Inception-V3. The reduction
of trial configurations is because the method improves the
accuracy of the pruned networks as Figure 7 shows. As a
result, the exploration meets a desirable configuration sooner.
For instance, in Flower102 (a = 0), the third smallest network
can already reach the target accuracy in the block-trained
version while the 297th network meets the target in the
default version. This not only shortens the exploration time,
but also yields more compact (up to 70% smaller) networks as
the “model size” columns in Table 3 show. Another reason for
the speedup is that the training of a block-trained network
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takes fewer iterations to reach its final accuracy level than
the default version, as Figure 6 has illustrated. Even when
configurations are not reduced (e.g., Flower102, &« = —1), the
block-trained exploration finishes sooner.

Table 4 shows the speedups by composability-based prun-
ing with different subspace sizes. The speedups are higher
as the number of configurations to explore increases. It is be-
cause the time for pre-training tuning blocks weights less as
the total time increases and the reduction of configurations
becomes more significant for a larger set. Another observa-
tion is that, when the number of configurations is only four,
there is still a significant speedup in most of cases. The block
training time is the time spent on pre-training all the tuning
block variants (48 for ResNet-50 and 27 for Inception-V3).
The speedup could be higher if tuning block identifier is
applied, as shown next.

Extra Benefits from Tuning Blocks Identification Hi-
erarchical tuning block identifier balances the overhead of
training tuning blocks and the time savings they bring to the
fine-tuning of pruned networks. Table 5 reports the extra
speedups brought when it is used.

For datasets Flowers102 and CUB200, we experiment with
two types of collections of configurations with N = 8. The
first type, “collection-1”, is a randomly sampled collection
as mentioned earlier, and the second type, “collection-2”,
is attained by setting one pruning rate for a sequence of
convolution modules, similar to the prior work [39] to reduce
module-wise meta-parameters. For each type, we repeat the
experiments five times with a new collection created each
time. Each tuning block identified from the first collection
tends to contain only one convolution module due to the
independence in choosing the pruning rate for each module.
But the average number of tuning blocks is less than the total
number of possible pruned convolution modules (41 versus
48 for ResNet-50 and 27 versus 33 for Inception-V3) because
of the small collection size. The latter one has tuning blocks
that contain a sequence of convolution modules as they are
set to use one pruning rate.

The extra speedups from the algorithm are substantial
for both, but more on the latter one for the opportunities
that some larger popular tuning blocks have for benefiting
the networks in that collection. Because some tuning blocks
selected by the algorithm are a sequence of convolution
modules that frequently appear in the collections, the total
number of tuning blocks becomes smaller (e.g., 27 versus 23
on Inception-V3.)

8 Related Work

Recent years have seen many studies on speeding up the
training and inference of CNN, both in software and hard-
ware. For the large volume, it is hard to list all; some examples
are work on software optimizations [16, 26, 44, 70] and work
on special hardware designs [8, 11, 13, 45, 48, 52, 56]. These
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studies are orthogonal to this work. Although they can po-
tentially apply to the training of pruned CNNs, they are
not specifically designed for CNN pruning. They focus on
speeding up the computations within one CNN network. In
contrast, our work exploits cross-network computation reuse,
exploiting the special properties of CNN pruning—many con-
figurations to explore, common layers shared among them,
and most importantly, the composability unveiled in this
work. We next concentrate on prior work closely related to
CNN pruning.

Deep neural networks are known to have many redundant
parameters and thus could be pruned to more compact archi-
tectures. Network pruning can work at different granularity
levels such as weights/connections [3, 17, 38], kernels [64]
and filters/channels [39, 43, 47]. Filter-level pruning is a
naturally structured way of pruning without introducing
sparsity, avoiding creating the need for sparse libraries or
specialized hardware. Given a well-trained network, differ-
ent metrics to evaluate filters importance are proposed such
as Taylor expansion [47], 1 norm of neuron weights [39], Av-
erage Percentage of Zeros [25], feature maps’ reconstruction
errors [20, 43], and scaling factors of batch normalization
layers [42]. These techniques, along with general algorithm
configuration techniques [6, 23, 58] and recent reinforcement
learning-based methods [4, 19], show promise in reducing
the configuration space worth exploring. This work distinc-
tively aims at reducing the evaluation time of the remaining
configurations by eliminating redundant training.

Another line of work in network pruning conducts prun-
ing dynamically at runtime [12, 40, 46]. Their goals are, how-
ever, different from ours. Instead of finding the best small
network, they try to generate networks that can adaptively
activate only part of the network for inference on a given
input. Because each part of the generated network may be
needed for some inputs, the overall size of the generated net-
work could be still large. They are not designed to make the
network meet the limited resource constraints on a system.

Sequitur [49] has been applied to various tasks, including
program and data pattern analysis [9, 10, 33-35, 62]. We have
not seen its use in CNN pruning,.

Several studies attempt to train a student network to
mimic the output of a teacher network [5, 7, 21]. Our method
of pre-training tuning blocks is inspired by these work, but
works at a different level: rather than for training an entire
network, we need to train pieces of a network. We are not
aware of the prior use of such a scheme at this level.

9 Conclusions

This work proposes a novel composability-based approach
to accelerating CNN pruning via computation reuse. It de-
signs a hierarchical compression-based algorithm to effi-
ciently identify tuning blocks for pre-training and effective
reuse. It further develops Wootz, the first compiler-based
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Table 3. Speedups and configuration savings by composability-based pruning (when 1, 4, or 16 machines are used for both
baseline and composability-based methods as "#nodes” column indicates). Notations are at the table bottom.

ResNet-50 Inception-V3
Dataset a |#nodes thrfaccl #configs | time (h) | model size [speedup overhead thrfaccl #configs [ time (h)  model size] [speedup overhead
[base[comp|base [comp [base [comp](X) [base[comp [base [comp [base [comp|(X)
1 500 |500 [2858.7(1912.7 1.5 0.4% 500 |500 |3018.8|2023.5 1.5 0.5%
-1%|4 0.983 |500 |500 ([718.1 [481.0 [100% [100% [1.5 0.5% 0.978 |500 |500 |[756.7 [508.1 [100% 100% | 1.5 0.7%
Flowers102 16 500 |500 [184.9 [125.5 1.5 1.8% 500 |500 [194.8 [133.6 1.5 2.7%
1 297 |3 1639.4|16.9 97.0 40.4% 244 110 1428.6|47.3 30.2 23.3%
0% |4 0.973 300 |4 412.6 |5.2 45.4%(29.3%(79.3 43.5% 0.968 244 |12 358.2 [13.9 [43.2% 32.4%(25.8 26.4%
16 304 |16 103.3 (4.7 22.0 48.3% 256 |16 94.8 6.5 14.6 56.4%
1 6 1 31.0 (83 3.7 82.8% 27 |1 152.6 [13.9 11.0 79.0%
1% |4 0.963 |8 4 104 |3.2 29.6%(27.6% (3.3 70.6% 0.958 |28 |4 39.6 (5.8 33.9% 31.0%(6.8 63.3%
16 16 |16 5.2 2.9 1.8 78.3% 32 |16 11.2 |5.6 2.2 71.0%
1 323 |2 1807.3|12.7 142.3 53.7% 74 |3 420.2 (219 19.2 49.8%
4% |4 0.739 |324 |4 454.0 (3.1 46.6% | 28.5% | 146.5 74.4% 0.720 |76 |4 106.4 6.7 41.4% 33.7%(15.9 54.5%
CUB200 16 336 |16 118.7 |3.1 38.3 74.4% 80 |16 27.6  [6.0 4.6 60.6%
1 297 |1 1654.7(8.9 185.9 77.1% 44 11 247.8 |14.1 17.6 77.5%
5% |4 0.731 |300 |4 418.8 (2.8 45.4%(27.6% | 149.6 81.4% 0.710 |44 |4 61.7 |54 38.5% 31.5%(11.4 67.6%
16 304 (16 105.5 |2.7 39.1 83.7% 48 |16 164 |52 3.2 70.6%
1 154 |1 840.1 (8.3 101.2 82.6% 29 |1 162.5 |12.8 12.7 85.1%
6% |4 0.724 |156 |4 214.2 (2.6 38.0%(27.6% |82.4 86.7% 0.700 |32 |4 445 |53 35.9% 31.0% (8.4 68.7%
16 160 |16 53.8 (2.5 21.5 89.7% 32 |16 10.8 |5.1 2.1 71.9%
1 500 |100 [2864.9(362.4 7.9 1.9% 271 |20 1586.8|85.6 18.5 12.8%
-1%|4 0.830 |500 [100 [720.4 [90.9 [100% [35.7%(7.9 2.5% 0.811 |272 |20 398.1 (224 [40.1% 33.5%(17.8 16.3%
Cars 16 500 |112 |185.3 |27.1 6.8 8.4% 272 |32 994 |[11.1 9.0 32.8%
1 332 |11 1848.6[44.4 41.6 15.4% 84 |3 480.3 |21.8 22.0 50.2%
0% |4 0.822 [332 |12 4614 (12.1 |46.9%|30.4% |38.1 18.8% 0.801 |84 |4 120.5 |7.2 36.9% 31.3%(16.7 50.6%
16 336 |16 1159 |5.2 22.3 44.0% 9 |16 338 |[6.7 5.0 54.7%
1 189 (2 1026.4(12.8 80.2 53.4% 33 |1 186.4 |14.2 13.1 77.0%
1% |4 0.814 |192 |4 259.7 (4.9 40.4%(28.5% |53.0 46.7% 0.791 |36 |4 50.7 [6.8 34.4% 31.0%|7.5 54.0%
16 192 |6 655 (4.1 16.0 55.7% 48 |16 16.4 |6.2 2.6 59.1%
1 500 |123 |2848.1|441.1 6.5 1.6% 416 201 |2470.7|786.0 3.1 1.4%
6% |4 0.799 |500 124 [709.8 [111.2 [60.0%(36.9% (6.4 2.0% 0.776 |416 |204 |[618.2 [199.3 [100% 47.9%3.1 1.8%
Dogs 16 500 |128 ([178.0 [28.3 6.3 8.1% 416 (208 |153.2 |52.7 2.9 6.9%
1 434 |70 2445.4|251.8 9.7 2.7% 311 |129 |1822.2]503.2 3.6 2.2%
7% |4 0.791 |436 |72 606.2 (63.9 [51.9%(34.2%(9.5 3.6% 0.766 312 |132 [456.1 [128.0 [56.0% 41.4%|3.6 2.8%
16 448 |80 149.3 |18.0 8.3 12.7% 320 |144 |116.2 |36.4 3.2 10.0%
1 297 |11 1632.8|42.3 38.6 16.2% 201 |82 1164.1|322.9 3.6 3.4%
8% |4 0.782 300 |12 411.7 (10.1 [45.4%(30.4%|40.8 22.7% 0.756 |204 |84 294.8 (83.1 |[47.9% 39.0%(3.5 4.4%
16 304 |16 102.4 |3.2 32.0 71.6% 208 |96 750 [26.1 2.9 13.9%
* thr_acc: accuracy corresponding to an accuracy drop rate a@.  base: baseline approach.  comp: composability-based approach.

speedup: Timeba”/Timecomp; overhead counted in Timecomp-

Table 4. Speedups by composability-based pruning with
different subspace sizes.

subspace|ResNet-50 Inception-V3
Dataset alpha|”.
size base [comp [speedup|[lbase  [comp [speedup
time (h)|time (h)|(X) time (h)|time (h)|(X)
4 22.7 13.4 1.7 20.3 16.8 1.2
16 90.9 12.8 7.1 76.7 20.6 3.7
Flowers102)0% 1 3648 |21 174 |[2247 [254 |88
256 1460.7 [13.5 108.2 809.4 140.7 19.9
4 22.8 11 2.1 23.6 26 0.9
16 93.8 11.4 8.2 83.5 30 2.8
CUB200 3% 64 369.6 |15.5 23.8 292.5 ]29.2 10
256 1472.9 |20.7 71.2 1128.9 |18.1 62.4

Table 5. Extra speedups brought by improved tuning block
definitions.

ResNet-50 Inception-V3
Dataset a extra speedup (X) extra speedup (X)
thr_acc collection-1|collection-2 thr_acc collection-1|collection-2
0%([0.973 |1.05 0.98 0.968 [1.12 1.14
Flowers102{1%/{0.963 [1.19 1.21 0.958 [1.08 1.15
2%(|0.953 [1.06 1.14 0.949 |1.15 1.23
3%((0.747 [1.04 1.08 0.737 |1.00 1.03
CUB200 4%((0.739  |1.04 1.20 0.729 {1.08 1.09
5%((0.731 |1.11 1.15 0.722 1.03 1.04
[geometric mean 1.08 1.12 “ [1.08 1.11

overhead: block training time over the total time of comp.

software framework that automates the application of the
composability-based approach to an arbitrary CNN model.
Experiments show that network pruning enabled by Wootz
shortens the state-of-the-art pruning process by up to 186X
while producing significantly better pruned networks. The
long exploration time of CNN pruning has been a major
barrier for timely delivery of many Al products. The promis-
ing results of Wootz indicate its potential for significantly
lowering the barrier, and hence reducing the time to market
Al products.
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