
HISyn: Human Learning-Inspired Natural Language
Programming

Zifan Nan
North Carolina State University
Raleigh, North Carolina, USA

znan@ncsu.edu

Hui Guan
University of Massachusetts Amherst

Amherst, Massachusetts, USA
huiguan@cs.umass.edu

Xipeng Shen
North Carolina State University
Raleigh, North Carolina, USA

xshen5@ncsu.edu

ABSTRACT
Natural Language (NL) programming automatically synthesizes
code based on inputs expressed in natural language. It has recently
received lots of growing interest. Recent solutions however all
require many labeled training examples for their data-driven nature.
This paper proposes an NLU-driven approach, a new approach
inspired by how humans learn programming. It centers around
Natural Language Understanding and draws on a novel graph-based
mapping algorithm, foregoing the need of large numbers of labeled
examples. The resulting NL programming framework, HISyn, using
no training examples, gives synthesis accuracy comparable to those
by data-driven methods trained on hundreds of training numbers.
HISynmeanwhile demonstrates advantages in interpretability, error
diagnosis support, and cross-domain extensibility.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
Source code generation.

KEYWORDS
Program synthesis, natural language programming

ACM Reference Format:
Zifan Nan, Hui Guan, and Xipeng Shen. 2020. HISyn: Human Learning-
Inspired Natural Language Programming. In Proceedings of the 28th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3368089.3409673

1 INTRODUCTION
Recent years have witnessed a growing interest in Natural Lan-
guage (NL) programming, where, code synthesizer automatically
produces programming code based on NL input from users. It is
especially appealing in cases where such an intuitive interface of-
fers conveniences to general users (e.g., IoT [40], Smarthome [25]),
and cases where there are many domain-specific APIs difficult for
a programmer to memorize (e.g., Python libraries [2]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409673

Existing approaches to NL programming fall into two classes:
data-driven and rule-driven approaches. The former features the
reliance on many labeled input-code pairs as training data to build
up some statistical models; the latter depends on some predefined
domain-specific rules. The rule-based approach had shown some
success in the early stage of the field development (e.g., Smart-
synth [25]), but have gradually lost attractions due to the lack of
robustness and the difficulties in generalizing across domains. The
data-driven approach has dominated recent efforts, represented
by the adoption of deep learning to map NL queries to code via
various neural networks (e.g., [2, 14, 29, 38, 39]). Although this
approach has shown more promise than the previous rule-driven
approach, its requirement of large numbers of labeled examples
hinders its adoptions, especially for domains where labeled exam-
ples are scarce. Although recent proposals show the possibility of
generating examples for a certain domain [3], it is yet unclear how
well these methods can generate truly representative examples in
complex domains.

In this work, we propose NLU-driven approach, an approach
driven by natural language understanding (NLU). It is inspired by
how humans code. Rather than going through thousands of exam-
ples as a data-driven approach does, a programmer can start coding
after she reads through the documentation of the language or API
of interest. She may check a few examples, but the number is far
less than what a data-driven approach usually needs. The key is in
understanding the language or API, the central feature NLU-driven
NL programming builds on.

More specifically, the NLU-driven approach features (1) deep
processing of programmers’ intentions and API documents written
in natural languages via NLU, and (2) the leverage of the deep
understanding rather than training examples for code synthesis.

Compared to data-driven approaches, the NLU-driven approach
has three appealing properties. First, by avoiding the need for a large
number of labeled examples, it saves users the (often heavy) burden
in collecting/generating examples, and makes NL programming
possible for domains where labeled examples are scarce. Second,
built on understanding rather than data, it avoids the bias that
training data examples bring to data-driven methods. Finally, as a
"white-box" approach, its better interpretabilitymakes the diagnosis
of synthesis errors easier to do.

Our exploration leads to HISyn (for “human learning inspired
synthesizer”), the first NLU-driven NL programming framework.
HISyn is equipped with several distinctive features.

(1) Deep NL understanding for code synthesis. A deep natural
language understanding is the key to human learning-inspired code
synthesis. Although NLP has been used in software maintenance [1,
4, 10, 12, 15, 21, 36, 50, 51, 53], its usage in NL programming is still

75

https://doi.org/10.1145/3368089.3409673
https://doi.org/10.1145/3368089.3409673
https://doi.org/10.1145/3368089.3409673

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zifan Nan, Hui Guan, Xipeng Shen

preliminary. Unlike prior synthesis studies that use shallowNLP just
for assistance, HISyn takes modern NLP as the first-order tool. With
it, HISyn automatically builds up the intermediate representation
of input queries, and the knowledge base of the programming
APIs, preparing the foundation for synthesis to work on. It uses
NL dependence analysis to capture the deep relations among the
different parts of the input query, andWordNet (a lexical database of
English with 117,000 synsets) to capture the semantic associations
of English words.

(2) Framework architecture design for cross-domain extensibility.
Domain differences are inherent to natural language programming.
Different domains have different terminologies, API definitions,
grammar, query patterns, and so on. Previous non—data-driven
studies are domain-specific; rules and elements specific to the target
domain are tightly integrated with the synthesizers, making them
difficult to port to other domains. HISyn strives to ensure cross-
domain extensibility in design. Drawing on inspirations on how
modern compilers deal with domain/language varieties, it creates
architecture with the front end producing a unified intermediate
representation (NL dependence graph) for an arbitrary domain, on
which, the back end operates to generate the code in the target API.
Neither the front end nor the back end requires changes across
domains. The HISyn design encapsulates domain-specific elements
into separate modules equipped with an easy-to-use interface. For
a new domain, the developer only needs to use the interfaces to
extend those domain-specific modules; no changes are needed for
the HISyn framework.

(3) Graph-based algorithm for mapping. Based on the intermedi-
ate representation, HISyn employs grammar graph-based translation
to generate code to materialize a user’s intention in the target pro-
gramming APIs. The novel algorithm first annotates each node
in the IR with candidate APIs and then uses path finding on the
reverse API grammar graph to identify the appropriate APIs, their
order, and assemble them into the final code. The algorithm bridges
the gap between the user’s intention and the APIs by leveraging
both the semantic connections at the natural language level and
the syntactical constraints at the API grammar level.

We evaluate HISyn on three domains, the domain of Text Edit-
ing, the domain of air travel queries, and the domain of program
source code analysis. Although combing with a few examples could
potentially help, to examine the potential of pure NLU-based ap-
proach, HISyn is designed to use no examples. Our experimental
results show that without any training examples, HISyn can pro-
duce code as accurately as those by a representative data-driven NL
programming framework trained on hundreds of examples. The
study validates the cross-domain portability of the core of HISyn,
and demonstrates the large potential of the NLU-driven approach
for NL programming while saving the burden of collecting large
numbers of training examples.

2 BACKGROUND
HISyn employs standard NL processing techniques, such as Tok-
enization, which splits a piece of text into tokens (i.e., words), POS
Tagging, which labels tokens (words) with their Part-Of-Speech
(POS) tags, Lemmatization, which reduces a word to its basic form
called lemma, andNamed Entity Recognition (NER) recognizes named

entities or pre-defined categories such as person names, organiza-
tions, quantities, and locations.

HISyn, in addition, heavily leverages dependency parsing, which
goes a deeper level than those listed NLP techniques, analyzing the
dependency relations between tokens in a sentence, and outputs a
dependency graph. A dependency relation is composed of a subor-
dinate word (called dependent), a word on which it depends (called
governor), and an asymmetrical grammatical relation between the
two words (called dependency type). Figure 1 shows the dependency
parsing result for an example sentence generated by the Stanford
CoreNLP dependency parser1 (along with the code to synthesize).
A dependency relation is marked as an arrow pointing from a gov-
ernor to a dependent and is labeled with the dependency type. The
arrow from “flight” to “cheapest” with the label “amod” indicates
that “cheapest” is an adjective modifier of “flight”. All the depen-
dency relations form a directed graph, which is called dependency
graph.

3 OVERALL FRAMEWORK
The framework design of HISyn is shown in Figure 2. It has three
main components: (1) a domain knowledge constructor that pro-
cesses the domain knowledge to assist code synthesis; (2) a front end
that transforms an NL-based query to a dependency graph which
serves as the basis for the intermediate representation that the back
end works on; (3) a back end that employees grammar-graph–based
translation to generate code based on the IR.

The domain knowledge constructor takes two files as inputs: (1)
a document that contains all the API and their descriptions; (2) a
grammar file that contains the context-free grammar written in
Backus-Naur form (BNF). The constructor parses the input files and
generates two outputs: (1) an API knowledge base for semantic map-
ping between words in NL-based queries and APIs; (2) a grammar
graph that defines the search space for code generation. A formal
definition of grammar graph will be introduced in Section 4.4.2.

The front end takes an NL-based query and applies light regu-
lation first to avoid term confusions for words that have domain-
specific meaning. It then uses multiple NLP techniques including
POS tagging, Lemmatization, NER, and dependency parsing to pro-
duce a dependency graph as an intermediate representation (IR).
HISyn prunes non-essential words (called function words) from the
IR based on the POS tag and the dependency relations of each word.
Figure 3(a) shows the pruned dependency graph of Figure 1. This
pruned IR is fed to the back end for code generation.

The back end then employs a novel synthesizing algorithm called
grammar graph-based translation to generate code according to the
pruned IR. Grammar graph-based translation first maps each node
in the IR to a set of APIs based on the lemma and synonyms of
words in each API’s description. The APIs corresponding to each
node are called candidate APIs. One node can be mapped to several
candidate APIs or no candidate API at all. In the case where multiple
nodes have a mapping to the same candidate API, HISyn uses a
longest match scheme to group the nodes as a cluster and selects the
candidate APIs for that cluster instead of each node in that cluster.
Grammar graph-based translation then translates the IR annotated

1http://corenlp.run/

76

http://corenlp.run/

HISyn: Human Learning-Inspired Natural Language Programming ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 1: Dependency parsing result from StanfordCoreNLP [32]. The corresponding code is shown in Table 1

Domain Knowledge Constructor

API
Documentation

DSL
Grammar

API
Knowledge

Grammar
Graph

Knowledge Base

Front
End

Tokeni-
zation

POS
Tagging NERLemma-

tization
Depen-
dency

Dependency Graph (IR)

Amended NLP

Back
End

Pruning

Semantic
Mapping

Reversed All-paths
Search

Longest
Match

Local
Reordering

Candidate paths
selection and
combination

Code
Generation

Grammar
Graph-
Based

Translation

DSL Codes

English Queries

Common
Knowledge

Base Domain Knowledge Base

Term
Replace-

ment

Figure 2: Framework Design.

with candidate APIs to DSL codes based on the grammar graph
generated by the domain knowledge constructor.

HISyn features a modular design. By separating domain-specific
modules from the core, it simplifies applications to a new domain.
We next explain each of the main components of HISyn.

4 NLP AND IR
This section first introduces the domain knowledge constructor and
the front end in the framework and then gives formal definitions
of the dependency graph and grammar graph, which are two core
data structures in HISyn.

4.1 Domain Knowledge Constructor
Domain knowledge constructor builds the common knowledge base
and the domain knowledge base.

The common knowledge base stores the information that could
be used in any domain. It contains three components: WordNet [34]
synonym list, Named Entities, and preposition dictionary. The
WordNet synonym list is used to help the Semantic Mapping step in
the back end. The named entities (NE) are the labels for real-world
objects, such as January’s NE is Month, Baltimore’s NE is City.
The preposition dictionary is a dictionary we create for mapping
a preposition to its semantic related words. For example, the se-
mantic related words of preposition “from” include “start”, “source”,
“origin”.

The domain knowledge base stores domain-specific knowledge.
Every domain will have its own knowledge base. It contains a
grammar graph (defined in section 4.4.2) and an API knowledge
base. The API knowledge base is generated by parsing the API
documentation and contains each API’ name, input/output types,
and its natural language description. Both API documentation and
grammar are stored in separate text files. API documentation is
stored in plain text with labeled content (e.g., Name: forStmt). The
grammar should be in Backus–Naur form [35]. Before synthesizing

the queries, HISyn will parse the text files and construct the domain
knowledge base.

4.2 Query Processing via Amended NLP
For a given NL query, the NLP engine goes through the following
steps: tokenizing, lemmatization, POS tagging, named entity recog-
nition (NER), and dependency parsing. HISyn then represents the
result as a dependency graph, which is used as the basis for the
intermediate representation (IR).

One special complexity for code synthesis is terminology con-
fusion. In a specific domain, some terms have a special meaning
that confuses the standard NLP parser. For instance, ‘for statement’
in ASTMatcher domain is a term indicating a type of statement,
i.e. for loops in programming languages. However, the NLP parser
will take ‘for’ as a preposition, and provide a parsing result that far
away from its meaning in the original query.

We address this issue by letting users add light regulations to the
input queries. Specifically, HISyn requires all of the domain-specific
terms to be put inside a pair of punctuation marks (double angle
brackets as default). For example, “find for statement” should be
written as “find <for statement>”. With the special words explicitly
marked, HISyn can easily replace them with some common terms
(mostly noun terms), and replace them back after NLP steps. Users
can specify their signs if angle brackets are terms of the target
domain.

4.3 Pruning
In natural language, some words in a sentence are function words
that express grammatical relationships among other words with
little lexical meaning. These words usually have no mapping to any
APIs. Thus, inside the dependency graph, the edges related to these
words are trivial edges. In this stage, we prune these trivial edges
with function words based on the dependency relation of the edges
and the POS tags of the tokens.

77

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zifan Nan, Hui Guan, Xipeng Shen

The default prunable dependency relation include the following
labels: (1) ‘det’, the determiners (a, an, the, some, etc.); (2) ‘case’, used
for prepositions (In StanfordCoreNLP enhanced++ dependency
parser, prepositions is labeled inside ‘nmod’, thus prunable.); (3)
‘mark’, the word introducing a clause subordinate to another clause;
(4) ‘ref’, the relative word introducing the relative clause; (5)‘aux’,
a function word associated with a verbal predicate that expresses
categories such as tense, mood, aspect, voice or evidentiality; (6)
‘cop’, a copula is the relation between the complement of a copular
verb and the copular verb; (7) ‘conj:and’, a conjunct is the relation
between two elements connected by a coordinating conjunction
(and, or, etc.) (8)‘punct’, punctuation; (9)‘acl:relcl’, a relative clause
modifier of an noun. (The parser also puts other specific relations
between the noun and its relative clause, thus this edge is prunable.)

The default prunable POS tags include the following labels: (1)
‘PRP’, the personal pronoun; (2) ‘MD’, modal; (3) ‘PRP$’, possessive
pronoun. (4)‘WP$’, possessive wh-pronoun.

HISyn will traverse the entire graph, prune the trivial edges and
nodes with dependency relations and POS tags listed above. Figure 1
and Figure 3(a) show the dependency graph before and after the
pruning. It is worth noting that as a cross-domain framework, users
could configure HISyn to add or delete the dependencies or POS
tags to refine the pruning process in new domains.

4.4 Intermediate Data Structures
This section gives the formal definition of two core data structures
used in grammar graph-based translation: dependency graph and
grammar graph.

4.4.1 Dependency Graph. Dependency graph is the output from
the front end of HISyn. It contains the word form, lemma form, POS
tag, and named entity label of each token in a NL-based query and
the dependency relations among the tokens. It is used as the basis
of the intermediate representation in guiding code generation in
the back end. We give the formal definition of a dependency graph
as follows:

Definition 1 (dependency graph). A dependency graph is a di-
rected acyclic graph, 𝐺𝑁𝐿 = (N𝑁𝐿, E𝑁𝐿), where

• each node 𝑛 = (𝑤𝑜𝑟𝑑, 𝑙𝑒𝑚𝑚𝑎, 𝑃𝑂𝑆, 𝑁𝐸) ∈ N𝑁𝐿 corresponds
to a token, which includes the word, lemma, POS tag, and
named entity tag; 𝑁𝐸 is empty if the word is not an named
entity.

• each edge 𝑒 = (𝑛𝑖 , 𝑛 𝑗 , 𝑑𝑒𝑝) ∈ E𝑁𝐿 is a direct edge, corre-
sponding to a dependency relation. The edge points from
𝑛𝑖 (called governor) to 𝑛 𝑗 (called dependent), with the depen-
dency relation 𝑑𝑒𝑝 .

4.4.2 Grammar Graph. A context-free grammar (CFG) is a quadru-
ple (T ,NT ,S,P) [6], i.e. (terminal symbols, nonterminal symbols,
start symbol, productions). To enable efficient valid code search,
we introduce a representation, grammar graph, to represent a CFG.

A grammar graph defines the search space for code generation.
Given a grammar graph, the code generation problem is trans-
formed to the problem of finding a subgraph called code generation
tree from the grammar graph. The definition of a code generation
tree will be introduced in Section 5.5.

In HISyn, the nodes in a grammar graph are of three types, non-
terminal nodes, derivation nodes, and API nodes. Edges are of two
types, ‘or’ edges and concatenation edges. We first introduce the
definitions of the nodes and edges and then the definition of a
grammar graph. In the definitions below, | ∗ | denotes the number of
elements in a set. Figure 3(e) is a partial grammar graph in the Air
Travel Information System (ATIS) domain. We use the following
production rules to illustrate a grammar graph:

𝑞𝑢𝑒𝑟𝑦 ::= 𝑝𝑟𝑒𝑑_𝑠𝑒𝑡 |𝑚𝑖𝑛_𝑓 |...|𝑝𝑟𝑜 𝑗𝑒𝑐𝑡
𝑚𝑖𝑛_𝑓 𝑎𝑟𝑒 ::= 𝑀𝐼𝑁_𝐹𝐴𝑅𝐸 (𝑐𝑜𝑙_𝑓 𝑎𝑟𝑒, 𝑝𝑟𝑒𝑑_𝑠𝑒𝑡)
𝑝𝑟𝑒𝑑 ::= 𝑒𝑞_𝑑𝑝𝑟𝑡, 𝑒𝑞_𝑎𝑟𝑟 |...

Definition 2 (Non-Terminal Node). A non-terminal node 𝑛𝑁 ∈
N𝑁 represents a unique non-terminal symbol in NT . We use N
to represent the set of non-terminal nodes derived from a CFG.

The number of non-terminal nodes is equal to the number of non-
terminal symbols (i.e., |N𝑁 | = |NT |). For example, in Figure 3(e),
the node min_fare is a non-terminal node.

Definition 3 (Derivation Node). A derivation node 𝑛𝐷 ∈ N𝐷

corresponds to the string in the right-hand side of a production
rule in a CFG. N𝐷 is used to represent the set of derivation nodes
derived from a CFG.

The number of derivation nodes is no more than the number of
production rules (i.e., |N𝐷 | ≤ |P|). This is because different produc-
tion rules could have the same right-hand side string. An example
of derivation nodes in Figure 3(e) is node MIN_FARE(c..,p..) (‘c..’
and ‘p..’ are the abbreviations of the arguments ‘col_fare’, ‘pred_set’
).

Definition 4 (API Node). An API node 𝑛𝐴 ∈ N𝐴 corresponds to
an API function name. N𝐴 represents the set of API nodes derived
from a CFG.

The number of API nodes is equal to the number of APIs. In
Figure 3(e), the node MIN_FARE is an API node.

Definition 5 (‘Or’ Edge). An ‘or’ edge 𝑒𝑂 ∈ E𝑂 is a directed
edge that points from a non-terminal node 𝑛𝑁 to a derivation node
𝑛𝐷 , denoted as 𝑒𝑂 = (𝑛𝑁 , 𝑛𝐷). E𝑂 represents the set of ‘or’ Edge
derived from a CFG.

An ‘or’ edge corresponds to a production rule; its tail represents
a non-terminal symbol while its head represents a string of one or
more terminal or non-terminal symbols. The number of ‘or’ edges is
equal to the number of production rules (i.e., |E𝑂 | = |P |). Because
some production rules can share the same non-terminal symbol
as their left-hand side, a non-terminal node corresponding to the
non-terminal symbol can also be tails of more than one ‘or’ edge.
Applying a production rule is equivalent to select one of the ‘or’
edges. The edges from the non-terminal node query to other nodes
in Figure 3(e) are ’or’ edges.

Definition 6 (Concatenation Edge). A concatenation edge 𝑒𝐶 ∈
E𝐶 is a directed edge that points from a derivation node 𝑛𝐷 to an
API node𝑛𝐴 or a non-terminal node𝑛𝑁 , or from anAPI node𝑛𝐴 to a
non-terminal node 𝑛𝑁 , denoted as 𝑒𝐶 = (𝑛𝐷 , 𝑛𝐴) or 𝑒𝐶 = (𝑛𝐷 , 𝑛𝑁)
or 𝑒𝐶 = (𝑛𝐴, 𝑛𝑁). E𝐶 represents the set of concatenation edges
derived from a CFG.

78

HISyn: Human Learning-Inspired Natural Language Programming ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

When a concatenation edge is (𝑛𝐷 , 𝑛𝐴) or (𝑛𝐷 , 𝑛𝑁), it means that
the API represented by 𝑛𝐴 or the non-terminal symbol represented
by 𝑛𝑁 is a sub-string of the symbol sequence represented by 𝑛𝐷 .
When a concatenation edge is (𝑛𝐴, 𝑛𝑁), it means that the non-
terminal symbol is one of the arguments of the function represented
by 𝑛𝐴 . In Figure 3(e), 𝑒 = (𝑀𝐼𝑁_𝐹𝐴𝑅𝐸 (𝑐.., 𝑝..), 𝑀𝐼𝑁_𝐹𝐴𝑅𝐸) is a
concatenation edge (𝑛𝐷 , 𝑛𝐴); 𝑒 = ((𝑒𝑞_𝑑𝑝𝑟𝑡, 𝑒𝑞_𝑎𝑟𝑟), 𝑒𝑞_𝑑𝑝𝑟𝑡) is
a concatenation edge (𝑛𝐷 , 𝑛𝑁); 𝑒 = (𝑀𝐴𝐼𝑁 _𝐹𝐴𝑅𝐸, 𝑐𝑜𝑙_𝑓 𝑎𝑟𝑒) is a
concatenation edge (𝑛𝐴, 𝑛𝑁).

A grammar graph contains all three types of nodes and two types
of edges.
Definition 7 (Grammar Graph). A grammar graph is a directed
graph, 𝐺𝐺 = (N𝐺 , E𝐺) , where N𝐺 = N𝑁 ∪ N𝐷 ∪ N𝐴 and E𝐺 =

E𝑂 ∪ E𝐶 .
All the concatenation edges E𝐶 directed from a 𝑛𝐷 or an 𝑛𝐴 are

ordered, and the order corresponds to the order of symbols inside a
derivation, or the order of arguments of an API. In Figure 3(e), the
number on each 𝑒𝐶 indicates the order of the symbols or arguments.

For a non-terminal node𝑛𝑁 that has multiple outgoing ‘or’ edges,
the first ‘or’ edge will be marked as the default edge and selected
to complete a path during synthesis.

5 GRAMMAR GRAPH-BASED TRANSLATION
Grammar graph-based translation is the synthesizing algorithm
used in the back end of HISyn to generate code in the target pro-
gramming APIs. The algorithm centers around the dependency
graph for the selection and the ordering of APIs and relies on the
grammar graph for code lowering and correctness. It takes the IR of
an NL-based query (dependency graph) as the input and annotates
each node in the IR with candidate APIs. The annotated dependency
graph will go through reversed all-paths search, local reordering, can-
didate paths selection and combination, and code generation steps to
finalize the DSL code. We next explain each major step in detail.

5.1 Semantic Mapping
Semantic mapping associates a list of candidate APIs to every node
and the edges whose dependency relation 𝑑𝑒𝑝 is a preposition
relation (𝑛𝑚𝑜𝑑 : 𝑝𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) in a dependency graph. These lists of
candidate APIs offer the basis for generating the target DSL code.

Node Mapping. A node 𝑛 = (𝑤𝑜𝑟𝑑, 𝑙𝑒𝑚𝑚𝑎, 𝑃𝑂𝑆, 𝑁𝐸) in a de-
pendency graph falls into three categories based its NE tag and
domain knowledge; each category is treated differently to create
its candidate API list. The mapping rules for each category are
described below:

(1) Domain Term Nodes. A domain-specific term is a term that
is explicitly marked by a user in the input query. It is defined in
Section 4.2. A node is a domain node if its word is a domain-specific
term. It has a one-to-onemappingwith anAPI and thus its candidate
API list contains only one API. For example, in ASTMatcher domain,
the term ‘for statement’ corresponds to the API ‘forStmt’, and ‘if
statement’ corresponds to the API ‘ifStmt’.

(2) Named Entity Nodes. A node is a named entity node if its NE
tag is not empty. Because a named entity is usually used as an argu-
ment of an API, HISyn generates a list of candidate API for a named
entity node by first identifying the APIs related to the node’s NE tag
and then using the node’s word form as an argument of each API.

For example, the node ‘Baltimore’ is mapped to ‘[CITI(Baltimore)]’
in Figure 3(a, b).

(3) Regular Nodes. A node is a regular node if it doesn’t fall into
the above two categories. For a regular node, a mapping exists if
the node’s word, lemma, or one of its synonyms is a token in an
API’s description. A regular node can have many or zero mapped
candidate APIs.

Edge Mapping. An edge (𝑛𝑖 , 𝑛 𝑗 , 𝑑𝑒𝑝) is a preposition edge if its
𝑑𝑒𝑝 is a preposition relation such as 𝑛𝑚𝑜𝑑 : 𝑓 𝑟𝑜𝑚 and 𝑛𝑚𝑜𝑑 : 𝑡𝑜 . A
mapping from an API to a preposition edge exists if any of the 𝑑𝑒𝑝’s
semantic related words is a token in the API’s description. A 𝑑𝑒𝑝’s
semantic related words are pre-defined in a preposition dictionary.
HISyn only considers preposition edges because prepositions are
used to express the temporal or spatial relations between two nouns.
These relations contain important semantic information between
the nodes connected by preposition edges. Thus, HISyn applies
edge mapping to extract such semantics.

We refer to the dependency graph annotated with the lists of
candidate APIs as an annotated dependency graph.

5.2 Longest-match Scheme
The longest-match scheme is designed to handle cases where a
phrase (more than one word) is used to refer to one API on the
grammar graph. For example, the ‘numeric letter’ in Text Editing
refers to the API NUMBERTOKEN. But if we map “numeric” and “let-
ter” separately, there will be two mapped APIs, NUMBERTOKEN and
CHARTOKEN, respectively.

Inspired by the longest-match principle used in many Scanners
to tokenize strings in compilers, we use the longest-match scheme to
determine the grouping of some nodes in the dependency graph. A
single set of candidate APIs will be identified for the group instead
of each node within the group.

If two nodes in the dependency graph are connected by a depen-
dency edge with modifier relations (amod, nmod), the edge is called
modifier edge and these nodes are within a modifier group. Other
nodes connected to a node in a modifier group with modifier edges
also belong to the same modifier group. The node which does not
have the governor is the top governor of this group.

For example, consider three modifier edges: A -mod-> B, A-mod-
> C, C -mod-> D. Then these four nodes are in one modifier group,
and A is the top governor. At this step, each node has its API
candidates. For each API inside the A’s candidates, HISyn checks
how many times this API is also a candidate of other nodes; the
result is taken as the score of that API. The APIs with the highest
score (ties can happen) are the longest-match candidates for the
phrase. Then nodes with candidate APIs stay inside the modifier
group, while the other nodes will be treated as regular nodes.

The modifier group will then be treated as one node in depen-
dency graph. The edges that link to the nodes inside the group will
link to the top governor with the directions and dependency rela-
tions stay unchanged. In Figure 3(a)(b), “flight” and “cheapest” are
in one modifier group, and the API MIN_FARE is the longest-match
API for this modifier group.

79

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zifan Nan, Hui Guan, Xipeng Shen

(d) Search results

nmod:from

1

Longest
match

Step 1, 2

MIN_FARE

pred_set

PRED_SET

...

pred

eq_departs, eq_arrives

eq_departs eq_arrives

EQ_DRPT EQ_ARR

query

min_fare

min_fare

MIN_FARE

EQ_DPRT

city

CITY

CITY

EQ_ARR

city

CITY

CITY

query

min_farepred_set ... project

min_farepred_set ... project

MIN_FAREPRED_SET ...

col_farepred

col_fare

...

COL_FARE

eq_dprt, eq_arr ...

eq_dprt eq_arr

EQ_DPRT EQ_ARR

city time weekday daynum month

CITY(...) TIME(...) WEEKDAY(...) ...

CITY time WEEKDAY DAYNUM MONTH

...

1

['EQ_DPRT', 'city', 'CITY']

['EQ_ARR', 'city', 'CITY']

['query', 'min_fare', 'MIN_FARE'], [...]

['MIN_FARE', 'pred_set',
'PredSet', ..., EQ_DEPARTS], [...]
['MIN_FARE', 'pred_set',
'Pred_Set', ..., EQ_ARR], [...]

2

3

4

5

['PredSet', 'MAX', 'MAX_TIME',
'MIN_TIME', 'MIN_FARE']

flight:

cheapest: ['MIN_FARE']
from:

Baltimore:
to:

Atlanta:

['EQ_DPRT']
['CITY(Baltimore)']
['EQ_ARR']
['CITY(Atlanta)']

CITY(Baltimore) CITY(Atlanta)

query

MIN_FARE

EQ_ARREQ_DPRT
2 3

4 5

1

2 3

4 5

1 2

2

1

(a) Dependency graph (b) Semantic mapping results

find

cheapest

flight
dobj

amod

Baltimore Atlanta
nmod:to

(c) Reverse all-paths search direction

(e) Grammar graph (f) Path selection and combination

Step 3

Steps
3,4

Step 5

 Nonterminal node

Derivation node

API node

Dependency node

Dependency edge

Searching directions

'Or' edge

Concatenation edge

Edge in the path

Complimentary edge

Path connection

Steps

1 Paths label

1 Concatenation edge
order

Step1: Semantic mapping
Step2: Longest Matching
Step3: Reversed All-paths

Search
Step4: Local Reordering

Step5: Candidates combi-
nation and selection

MIN_FARE(c..,p..)PRED_SET(...) ...
MIN_FARE

Figure 3: Running examples for grammar graph based translation

5.3 Reversed All-paths Search
Reversed all-paths search identifies a set of candidate paths in
the grammar graph for each dependency edge in the annotated
dependency graph. These sets of candidate paths will be pruned,
reordered, and combined in later steps to determine the orders of
candidate APIs. We next introduce several important concepts used
in the search algorithm and then describe the algorithm.

A reversed grammar graph is a directed graph on the same set of
vertices with all of the edges reversed compared to the orientation
of the corresponding edges in the grammar graph. A candidate path
is a directed path in the reversed grammar graph or grammar graph.
The root of a candidate path is the node with no incoming edges;

the leave of a candidate path is the node with no outgoing edges.
Both the root and the leave of a candidate path are API nodes.

For each edge, (𝑔𝑜𝑣𝑒𝑟𝑛𝑜𝑟, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 𝑑𝑒𝑝) in the annotated de-
pendency graph, the algorithm conducts Breadth-First Search (BFS)
on the reversed grammar graph to identify a set of candidate paths.
The search starts from each candidate API of the node 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
and stops when the start symbol of the grammar is reached. During
the search, a visited node will not be added to the path again to
avoid an infinite loop if recursion exists in the grammar. If a path
reaches one of the candidate APIs of the node 𝑔𝑜𝑣𝑒𝑟𝑛𝑜𝑟 , it will
be recorded. The paths that end at the start symbol will also be
recorded. After getting all the candidate paths for each edge, we
apply two pruning strategies to reduce the number of candidate
paths: (1) If there exists at least one path that contains any one

80

HISyn: Human Learning-Inspired Natural Language Programming ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

declares

single

variable
dobj

amod
initialized

acl

declares

variable

single
amod

dobj

initialized
acl

Figure 4: Local reordering

of the candidate APIs for the node 𝑔𝑜𝑣𝑒𝑟𝑛𝑜𝑟 , the paths ending at
the grammar’s start symbol will be discarded. (2) If a candidate
API of the 𝑔𝑜𝑣𝑒𝑟𝑛𝑜𝑟 is not the destination of any paths from any
dependent’s candidate API, it indicates that this candidate API is
not related to the 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 . This candidate API will be deleted
from the candidate API list of the 𝑔𝑜𝑣𝑒𝑟𝑛𝑜𝑟 . All the paths starting
from the deleted candidate API will also be removed. The remaining
candidate paths are used to generate final DSL codes in later steps.

The algorithm is motivated by our observation that, when de-
scribing the queries in English, people typically follow a gradually
refining way. They state the main interest or purpose first, then pro-
vide detailed information with dependents. For example, consider
the query in Figure 1:
I would like to find the cheapest flight from Baltimore
to Atlanta.

This query contains the following information: it wants to query
about a flight; this flight has the cheapest fare; this flight’s departure
city is Baltimore; this flight’s arriving city is Atlanta.

The edges on the dependency graph show such relations (Fig-
ure 3(a)). Inside the graph, the words “cheapest”, “Baltimore” and
“Atlanta” are all dependents of the “flight” with ‘nmod’ (nominal
modifier) relation. It is consistent with the structure patterns of
ATIS query language, which start with the main object or purpose
first, then use arguments to specify the details.

Therefore, the direction of edges in the dependency graph pointed
out the basic structure of the code: the APIs mapped from the depen-
dent are inside the arguments of the API mapped from the governor.
Correspondingly, on the grammar graph, the APIs mapped from
the dependent should be the descendants of the API mapped from
the governor. In Figure 3(c), we indicate the search direction on the
grammar graph. The numbers label the paths for each <start, goal>
pair, and Figure 3(d) shows the search results correspondingly.

5.4 Local Edge Reordering
After the reversed all-paths search, HISyn applies local edge re-
ordering to fix the structure of the dependency graph. Although the
dependency relations in a dependency graph can guide the ordering
of the APIs when generating DSL code, the following two depen-
dency relations are exceptions we observed from our observation
of a small set of examples:

(1) Dependency relations related to subject. The relative order of a
subject and a verb in the code snippets can be the opposite of that
specified by their dependency relation. When parsing an English
query, the NLP engine makes the verb as the governor of the subject.
This structure is sometimes consistent with the code grammar. For
example, the code for the description “A adds B” is “add(A, B)”.
However, exceptions exist. For example, the code for “A returns
B” should be “A(returns(B))” rather than “returns(A, B))”.

(2) Dependency relations related to modifiers. A modifier is always
the dependent of the noun it modifies. But an API can modify an-
other API either by using the second API as an argument or being
the argument of the second API. For example, in ASTMatcher do-
main, “A declares a single variable” corresponds to the code
snippet “A(declStmt(hasSingleDecl(varDecl())))”. Because “single"
modifies the ‘variable’, “hasSingleDecl” appears before “varDecl()”.
However, the code for “a global variable” is “varDecl(has-
GlobalStorage())”. Although "global" modifies "variable", the API
“hasGlobalStorage()” is after “ varDecl”.

Given an edge 𝑒 = (𝐴, 𝐵,𝑑𝑒𝑝) in a dependency graph whose 𝑑𝑒𝑝
is one of the above two types of dependency relations, HISyn con-
ducts reordering if any of the two situations occur: (1) There is no
path from B’s candidate APIs to A’s candidate APIs. (2) There exists
at least one path from A’s candidate APIs to B’s (i.e. reversed direc-
tion) that is shorter than the shortest path from B’s candidate APIs
to A’s. The rationale is that a shorter path on the grammar graph is
preferred because the corresponding dependent and governor in
the dependency graph are neighbors.

If reordering is needed, HISyn changes the positions of the gov-
ernor and the dependent, as shown in Figure 4. Then reversed
all-paths search is re-applied to the reordered edges to find all the
candidate paths.

5.5 Candidate Paths Selection and
Combination

After reversed all-paths search and local edge reordering, this step
combines the sets of candidate paths into code generation trees for
generating DSL code. We first give a formal definition of code
generation tree and then describe the algorithm to generate such
trees.
Definition 8 (Code Generation Tree). A code generation tree
(CGT) 𝐺𝑇 = (N𝑇 , E𝑇) is a subgraph of grammar graph 𝐺𝐺 =

(N𝐺 , E𝐺), where N𝑇 ⊂ N𝐺 and E𝑇 ⊂ E𝐺 . A CGT is a directed
acyclic graph whose undirected counterpart is a tree. The root of a
CGT is a non-terminal node that corresponds to the start symbol.
We define the size of a CGT as the number of API nodes in the tree.

The algorithm first reverses every candidate path so that the
direction of each edge in the path is the same as the one in the
grammar graph. It then uses only one of the candidate paths from
each edge in a dependency graph and combines the selected can-
didate paths based on the structure of the dependency graph into
a CGT. Because an edge in the dependency graph can have more
than one candidate path, this step results in many CGTs.

There are two cases for candidate paths combination: siblings
paths combination and parent-child paths combination.

(1) Siblings paths combination. Two dependency edges are siblings
edges if they have the same governor. Two candidate paths are
sibling paths if the corresponding dependency edges are siblings.
Because a dependency edge can have many candidate paths, HISyn
generates all the combinations of the path candidates from each
sibling edge. For each combination, HISyn combines sibling paths
by joining the same nodes in the paths to build a prefix tree. If two
sibling paths do not have any nodes in common, they are ignored.

A grammar check will be applied to remove prefix trees that are
not correct. For each node in a prefix tree, if it is a non-terminal

81

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zifan Nan, Hui Guan, Xipeng Shen

node, HISyn checks if it has only one derivation node as a child; if
it is an API node, HISyn checks if the child nodes are the subset of
the API arguments. The grammar check at this step only checks the
existence of the child nodes, the order of child nodes is considered
in the code generation step.

For edges with no siblings, each of the candidate paths will be
treated as a prefix tree. The up-right Figure (labeled path 2,3) in
Figure 3(f) is one of the prefix trees for paths from MIN_FARE to
EQ_DPRT and from MIN_FARE to EQ_ARR.

(2) Parent-child paths combination. A dependency edge 𝑒1 is the
parent of another edge 𝑒2 if 𝑒1’s dependent/head is 𝑒2’s governor/tail.
These two dependency edges are called parent-child edges. Two
candidate paths are parent-child paths if their dependency edges
are parent-child edges. HISyn combines a parent path with the child
path by adding an edge directed from the leave of the parent path
to the root of the child path. In Figure 3(f), path 4 and path 5 are
connected to prefix tree (2,3), and prefix tree (2,3) is connected to
path 1.

After all the siblings paths combination and parent-child paths
combination, the final connected prefix trees become the code gen-
eration trees. The code generation trees then will be transformed
to the final code expression in the next step.

5.6 Code Generation
At this stage, HISyn has translated the IR into a set of code gen-
eration trees. This step first selects the minimum CGT and then
uses the minimum CGT to generate the correct code expression. A
minimum CGT is the one that has the smallest size (i.e., the smallest
number of API nodes).

The rationale of using a minimum CGT for code generation is as
follows. The more APIs in a code expression, the more information
it conveys. Because all the key information contained in a query
is already mapped to candidate APIs during our synthesis process,
the smallest CGT is preferred to avoid including redundant or
unnecessary APIs in the generated code.

A CGT might miss some important nodes for generating the
grammar-correct code. We fill those missing nodes by applying two
rules: (1) If a derivation node is in the CGT, then all the non-terminal
nodes who are children of the derivation node should also be in the
CGT. This is because a derivation node is the right-hand side of a
production rule and its children are the non-terminal symbols or
terminal symbols in the right-hand side. (2) If an API node is in the
CGT, then the descendants of the API nodes should also be in the
CGT. This is because an API’s descendants will generate the API’s
arguments. We refer to the filled CGT as a completed CGT.

If there are multiple minimum CGTs, HISyn will complete all of
these minimum CGTs and choose the minimum completed CGT.
If ties still exist, this situation happens when one keyword in a
query can be mapped to two or more APIs that have similar syntax
roles in the grammar–that is, APIs that can be derived from the
same non-terminal and have the same terminals as input. Then
HISyn will select the API with the shortest description (All the
API descriptions are processed by the NLP engine and the function
words are removed when counting the length of the description).
This heuristic assumes that a more complex API needs more words

to describe it. If this API is needed, the query should bemore specific.
Thus the limit keywords only lead to an API with less description.

The completed CGT will be transformed into a code expression.
HISyn simplifies the CGT by removing all the non-terminal nodes
and derivation nodes so that only API nodes are kept in the CGT.
The simplified CGT can then be structured to an ordered API-
argument sequence (i.e., DSL code) based on the directed edges.

6 EVALUATION
We conduct a set of experiments to examine the efficacy of the
HISyn framework cross domains. To test the potential of a pure
NLU-driven approach, we use no labeled examples for HISyn. We
use the experiments to answer three questions: (1) Compared to
data-driven methods trained on many labeled examples, can HISyn
produce comparable results without any training example? (2) How
does the length of a query affect the accuracy of HISyn ? (3) What
are the reasons that cause errors?

We describe the experiment settings in Section 6.1, report our
experiment results and comparisons in Sections 6.2, and provide a
detailed error analysis in several representative cases in Section 6.3.

6.1 Methodology
6.1.1 Dataset. We use three datasets with different DSLs to eval-
uate HISyn. The first dataset2 is the DSL designed for repetitive
Text Editing tasks. The second dataset3 is the DSL designed for
the Air Travel Information System (ATIS) [7]. Both of these two
datasets come from the work [8]. The third dataset is the DSL in
LLVM/Clang, designed for AST node matching.

Text Editing language is a command language that aims to
free Office suite application end-users from understanding syntax
and semantics of regular expressions, conditionals, and loops. This
DSL has 52 APIs in total. The dataset for Text Editing includes 467
English queries and DSL pairs.

Air Travel Information System (ATIS) is a standard bench-
mark for querying air travel information. This ATIS DSL is de-
signed based around SQL style operations and provides support for
predicates/expressions that correspond to important concepts in
air-travel queries, arrival/departure locations, times, dates, prices,
etc. It has 51 APIs in total. The dataset for ATIS includes 535 English
queries and DSL pairs.

ASTMatcher is a tool in Clang/LLVM for constructing AST
Matching expressions to find code patterns of interest. It represents
a domain with high complexity but scarce labeled examples. There
are a total of 505 ASTMatcher APIs with a full-fledged data type
hierarchy (over 200 types). We collect 50 ASTMatcher expressions
from Clang-tidy and let 5 graduate students write the English de-
scriptions independently. Each ASTMatcher expression is described
using a single English sentence from at least two students.

The Text Editing datasets and ATIS datasets do not provide the
API documentation and grammar. We manually created these two
domain documentations based on the English description and codes.
The ASTMatcher dataset provides the official documentation. We
generate grammar based on this documentation.

2shorturl.at/npFIS
3shorturl.at/sxyS5

82

HISyn: Human Learning-Inspired Natural Language Programming ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: NL queries and codes examples

DSL Query Code

ASTMatcher

Find for statements whose
init portion declares a
single variable which is
initialized to the integer
literal 0.

forStmt(hasLoopInit(
declStmt(hasSingleDecl(

varDecl(hasInitializer(
integerLiteral(equals(0))))))));

ATIS
I would like to find
the cheapest flight
from Baltimore to Atlanta

EXTRACT_ROW_MIN_F(COL_FARE()),
AtomicRowPredSet(AtomicRowPred(

EQ_DEPARTS(CITY(baltimore), ANY(), ANY(), ANY(), ANY()),
EQ_ARRIVES(CITY(atlanta), ANY(), ANY(), ANY(), ANY())))

Text Editing Insert ":" after #1st word.
INSERT(STRING(:),

Position(AFTER(WORDTOKEN()), IntegerSet(INTEGER(1))),
IterationScope(LINESCOPE(), BConditionOccurrence(ALWAYS(), ALL())))

6.1.2 Evaluation Metrics. We use all the test cases in each domain
in the experiments. We use DSL codes synthesis accuracy to evalu-
ate the performance of HISyn. The synthesis accuracy is the ratio
between the number of correctly synthesized DSL code expressions
and the number of total test cases. A synthesized DSL code is cor-
rect if it is identical to the ground truth code, including the APIs,
variables, values, and their relative order.

6.1.3 Methods for Comparison. We compare HISyn with a data-
driven synthesizer [8] in Text Editing domain and ATIS domain,
and a rule-driven synthesizer in ASTMatcher domain. We choose
it for comparison because (i) As HISyn, it is a generic synthesizer
that takes NL queries as inputs and produces code expressions for
multiple domains. (ii) on the available training data in Text Editing
and ATIS domains, it gives accuracy comparable to the existing
domain-specific NL-based synthesizers.

In this priorwork, the data-driven synthesizer [8] builds a generic
NL-based synthesizer using machine learning. It takes as input DSL
definition and training data consisting of NL/DSL pairs and builds
a synthesizer by learning the weights and classifiers to rank the
output of keywords-programming based translation.

The prior work applies to the Text Editing domain and ATIS
domain, but not the ASTMatcher domain. It is because this domain
has over 500 ASTMatcher APIs. A large number of APIs brings
many complexities to this domain. With various usage conditions,
a data-driven method requires a large number of training examples
to train a statistical model that possibly covers most of the use
cases of APIs. The real-world labeled cases in this domain are yet
scarce. Rule-based approach works better in this scenario. We hence
build a rule-based synthesizer as a comparison in this domain. It is
based on previous work [25], which uses simple NL processing and
heavily relies on type checks and domain heuristics.

6.2 Accuracy of HISyn
Figure 5(a) reports the overall accuracy of HISyn. The accuracies
of the data-driven method (on the first two domains) come directly
from the previous paper [8], obtained after creating/collecting hun-
dreds of labeled examples and using them to train. HISyn, without
using any training example, achieves comparable accuracies with
them, 82.59% for text editing and 85.47% for ATIS.

Text Editing ATIS ASTMathcer
Domains

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

82.59 85.4
80.082.3

88.4

68.0

(a)Comparison with other methods

HiSyn Comparison

Text Editing ATIS ASTMathcer
Domains

0

20

40

60

80

100
88.03 89.81 89.29

59.3
64.56 68.18

(b)Comparison on query difficulties

Easy Hard

Figure 5: Accuracy of HISyn in three different domains

In the ASTMatcher domain, the rule-driven synthesizer achieves
68% accuracy, 12% lower than HISyn. The result shows the benefits
of NLU and its mapping algorithm over rule-driven methods.

Figure 5(b) shows the accuracy comparison on queries with dif-
ferent lengths. The average query lengths of Text Editing domain,
ATIS domain, ASTMatcher domain are 7, 12, and 9. HISyn achieves
88.03% , 89.81%, 89.29% accuracy on shorter queries in three do-
mains, and 59.3%, 64.56%, 68.18% on longer (often harder) queries.

The much higher accuracy on the easy queries is due to two
major reasons: (1) Given a hard query, an NLP engine in the front
end is more likely to generate a wrong dependency graph. (2) In the
back end, a hard query increases the number of paths to combine
and select, making it harder to generate the right CGTs.

6.3 Error Analysis
Unlike the "black-box" method in Neural Network-based data-
driven approaches, the interpretable nature of HISyn makes error
diagnosis easy to do. In this section, we analyze three major cases
where HISyn fails to synthesize the correct code expressions to
provide some insights. Both the front end and the back end could
cause errors. The errors in the front end are typically caused by the
ambiguity in natural language or incorrect semantic mapping. The
errors in the back end result from wrong decision paths selection
and combination steps.

83

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zifan Nan, Hui Guan, Xipeng Shen

6.3.1 Limitations in NLP Engines. NLP engines may cause errors.
Consider the following two test queries:

Query-1: Would you tell me the cheapest one way fare from
Boston to Oakland?

Query-2: Please give me information concerning a flight from
Washington DC to Philadelphia the earliest one in the morning.

Query-1 is an example of lexical ambiguity. The dependency
parser treated ‘Oakland’ as the noun modifier of ‘tell’ (i.e. tell ...
to Oakland), resulting in the wrong dependency edges in the IR.
Query-2 is an example of semantic ambiguity. ‘one’ is considered
as a number and taken as a part of the phrase ‘one in the morning’.
But ‘one’ is a pronoun in this query. This semantic ambiguity leads
to the mapping of API Time(1am), which is not the intention of the
original query.

When we manually fix the parsing errors, HISyn gives correct
synthesis results. As NLP techniques progress, NLU-driven synthe-
sis is expected to provide even better results.

6.3.2 Incorrect Semantic Mapping. This type of errors is caused
by passive voice or a word that combines the semantic meaning of
several APIs. For example:

Query-3: Print any word that is followed by ’team’.
Query-4: Prepend each line with "#".
In query-3, ‘is followed’ here means the position before the word

’team’, and it should be mapped to API BEFORECOND(). The docu-
ment of the API has "before" relation described, and the synthesizer
fails in recognizing that ‘follow’ essentially means that relation but
in a different way, and hence results in a wrong mapping. In query-
4, the word ‘prepend’ means ‘insert at the beginning’, which can be
mapped to two APIs, INSERT() and START() (START() indicates
the location of insertion is at the beginning). However, the seman-
tic mapping step only identifies one API (INSERT()) for each node.
The missing of ‘beginning’ leads to the error. Applying a deeper
semantic analysis for semantic mapping may help this situation.

6.3.3 Wrong Decision in Code Generation Step. In the code gen-
eration step, we use the minimum CGT to generate the final code
expression. It works in most of the cases because the minimum CGT
covers all the information inside a query with the least number of
APIs. But exceptions exist.

Query-5: In every line, delete the text after “//”
The correct code expression should be:

REMOVE(SelectString(TEXTTOKEN(),
BConditionOccurrence(

AFTERCOND(STRING(//), IMM()), ALL())),
IterationScope(LINESCOPE(),

BConditionOccurrence(ALWAYS(),ALL())))
The synthesized code expression is:

REMOVE(SelectString(TEXTTOKEN(),
BConditionOccurrence(ALWAYS(),ALL())),

IterationScope(LINESCOPE(),
BConditionOccurrence(

AFTERCOND(STRING(//), IMM()), ALL())))
The error is the location of the condition “after ‘//’ ”. “After ‘//’ ”

is the condition for deleting the text. But in synthesized code, it is
inside the condition for iteration.

This error occurs when the following candidate paths from the
two dependency edges are combined: 𝑒1 = (𝑑𝑒𝑙𝑒𝑡𝑒, 𝑙𝑖𝑛𝑒, 𝑛𝑚𝑜𝑑 : 𝑖𝑛)
and 𝑒2 = (𝑑𝑒𝑙𝑒𝑡𝑒, 𝑆𝑇𝑅𝐼𝑁𝐺 (//), 𝑛𝑚𝑜𝑑 : 𝑎𝑓 𝑡𝑒𝑟). 𝑒1 has one path 𝑝11
= [REMOVE, IterationScope, LINESCOPE]. 𝑒2 edge has two paths
𝑝21 = [REMOVE, SelectString, BConditionOccrance, AFTERCOND],
𝑝22 = [REMOVE, IterationScope, BConditionOccrance, AFTERCOND].
When combining paths of 𝑒1 and 𝑒2, the CGT combined from 𝑝11
and 𝑝22 will have smaller size (5 APIs) than the combination of 𝑝11
and 𝑝21 (6 APIs), since [REMOVE, IterationScope] in 𝑝11 and 𝑝22
will be combined as prefix. Thus the smaller CGT will be chosen
to generate the final code expression. Using deeper semantics to
guide the paths selection and combination steps could be one of
the solutions to avoid this error.

6.4 Threats to Validity
There are several factors that may threaten the validity of HISyn.

The quality of API documentations. Like in human programming,
the quality of the documentation of the target API or language
is important. The API description decides which APIs will be the
candidates for a mapping element in IR. If the description is not
precise, an API may not be selected as a candidate, which leads to
errors in results. If the description of several APIs is similar, more
unrelated APIs will be selected, and result in more paths in later
steps and cause errors potentially. The issue can bemitigated by pro-
viding some guidelines or even tools to help document developers
in ensuring the quality of documentation.

The quality of queries. The queries are the only source informa-
tion that describes the user’s intention. Thus, the quality of queries
directly affects the synthesized results. A query with grammar
errors could mislead the NLP engine and result in a wrong depen-
dency graph; a query with imprecise descriptions will not describe
the intention clearly and could lead to wrong semantic mappings.
The issue can be mitigated by extending the front end of HISyn
into an interactive module which may clarify users’ intentions by
interacting with users.

7 RELATEDWORK
NLP has been used for software maintenance and other purposes [1,
4, 10, 12, 15, 21, 36, 50, 51, 53]. Our discussion concentrates on work
closely related with code synthesis.

Various specifications are used for code synthesis. A specification
can be first-order logic expressions [18, 23], a set of examples [16, 17,
44], natural language [8, 19, 25, 26, 43, 48], partial programs [13, 45]
or any other form that is easier to write than the expected program.
As HISyn is a natural language-based synthesizer, we concentrate
on prior work on program synthesis from natural language (NL).

Rule-based approaches have been developed to synthesize pro-
grams for domain-specific tasks such as smartphone automation [25],
SQL queries [27, 48], and SpreadSheet data analysis [19]. In contrast,
HISyn is featured by cross-domain extensibility.

Recent efforts have been spent on machine learning-based ap-
proaches [2, 5, 8, 9, 11, 14, 20, 22, 24, 28–30, 37–41, 43, 46, 49, 52].
For example, Desai and others [8] presented a general framework
for constructing program synthesizers given a domain-specific lan-
guage (DSL) definition and training data that contains example
pairs of English sentences and the expected programs in the DSL.

84

HISyn: Human Learning-Inspired Natural Language Programming ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Quirk [40] uses the semantic mapping approach that learns to map
natural-language descriptions of "if-then" rules to executable code.
Lin [28] leverages recurrent neural networks (RNNs) for NL to code
translation. Chen [5] applies LSTM-based sequence-to-sequence
model with other specifications for code synthesis. Applying these
approaches to program analysis would require many training ex-
amples to cover the vast space of possible code complexities and
situations. HISyn avoids the barrier by taking full advantage of
the domain knowledge, NL dependencies, and the grammar graph-
based translation.

Another body of work is API learning. This work tries to identify
some statistical patterns of API usage. Examples include code search
tools [31, 33], API usage pattern mining [42, 47], API sequence
generation [14]. These studies rely on statistical machine learning
techniques. They hence require a large set of examples, requiring
extra efforts when applying to other domains.

8 DISCUSSIONS
Our study has focused on the core technical challenges. Some engi-
neering considerations may need to take in the practical usage of
HISyn. For instance, even though HISyn gives reasonably accurate
results, the accuracy could be potentially improved with some in-
teractive features added. The tool could provide some informative
feedback to users, such as the dependency graph from the NL query
and the semantic mapping between the nodes and the APIs (like
Figure 3 (b)). That could give programmers insights on the gener-
ated code expressions and help them replace erroneous parts. At
programmers’ demands, the tool may also show other candidates
(not only the minimum heuristic) in the semantic mapping list of
a node (optionally in the order of promise) to offer programmers
more choices. Prior studies [17, 19, 27] have explored interactivity
for NL-based code synthesis; we decided to focus this work on the
core challenges and leave the interactivity as a feature to add in the
future.

The NLP tool we select to use is not the one with the most
cutting-edge NLP techniques, but the one with common adoptions
for its maturity. There has been much progress in NLP in recent
years, which provides promising techniques to improve NLP results.
We foresee that as these techniques become more mature and get
integrated into practical NLP tools, the accuracy of HISyn could
get further improved.

9 CONCLUSION
This paper introduces NLU-driven code synthesis, a new approach
to NL programming. Experiments on framework HISyn demon-
strate that NLU-driven, without using any training example, can
produce results comparable with data-driven methods trained on
hundreds of labeled examples. It saves the burden in example col-
lections, avoids dataset-caused biases, and at the same time, gives
much better interpretability and support for error diagnosis. In do-
mains already having many labeled data, the NLU-driven method
could potentially combine with data-driven methods to reduce bi-
ases and increase interpretability, which is left for the future to
explore.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-
ence Foundation (NSF) under Grant No. CCF-1525609, CCF-1703487,
CNS-1717425. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[2] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019.
AutoPandas: neural-backed generators for program synthesis. Proceedings of the
ACM on Programming Languages 3, OOPSLA (2019), 1–27.

[3] Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher, and Monica S
Lam. 2019. Genie: A generator of natural language semantic parsers for virtual
assistant commands. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 394–410.

[4] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting missing
information in bug descriptions. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 396–407.

[5] Yanju Chen, RubenMartins, and Yu Feng. 2019. Maximal multi-layer specification
synthesis. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
602–612.

[6] Keith Cooper and Linda Torczon. 2011. Engineering a compiler. Elsevier.
[7] Deborah A Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-

Smith, David Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriberg.
1994. Expanding the scope of the ATIS task: The ATIS-3 corpus. In Proceedings of
the workshop on Human Language Technology. Association for Computational
Linguistics, 43–48.

[8] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark
Marron, Subhajit Roy, et al. 2016. Program synthesis using natural language. In
Proceedings of the 38th International Conference on Software Engineering. ACM,
345–356.

[9] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman
Mohamed, and Pushmeet Kohli. 2017. Robustfill: Neural program learning under
noisy i/o. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 990–998.

[10] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, and Ravi Netravali.
2019. A System-Wide Debugging Assistant Powered by Natural Language Pro-
cessing. In Proceedings of the ACM Symposium on Cloud Computing. 171–177.

[11] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural Atten-
tion. In ACL (1). http://aclweb.org/anthology/P/P16/P16-1004.pdf

[12] Michael D Ernst. 2017. Natural language is a programming language: Applying
natural language processing to software development. In 2nd Summit on Advances
in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[13] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps. 2017.
Component-based synthesis for complex APIs. ACM SIGPLAN Notices 52, 1 (2017),
599–612.

[14] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ACM, 631–642.

[15] Hui Guan, Xipeng Shen, and Hamid Krim. 2017. Egeria: a framework for auto-
matic synthesis of HPC advising tools through multi-layered natural language
processing. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14.

[16] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In ACM SIGPLAN Notices, Vol. 46. ACM, 317–330.

[17] Sumit Gulwani. 2012. Synthesis from examples: Interaction models and algo-
rithms. In Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
2012 14th International Symposium on. IEEE, 8–14.

[18] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of loop-free programs. ACM SIGPLAN Notices 46, 6 (2011), 62–73.

[19] Sumit Gulwani and Mark Marron. 2014. Nlyze: Interactive programming by
natural language for spreadsheet data analysis and manipulation. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of data. ACM,
803–814.

[20] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java expressions from
free-form queries. In Acm Sigplan Notices, Vol. 50. ACM, 416–432.

85

http://aclweb.org/anthology/P/P16/P16-1004.pdf

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zifan Nan, Hui Guan, Xipeng Shen

[21] Sonia Haiduc, Venera Arnaoudova, Andrian Marcus, and Giuliano Antoniol. 2016.
The use of text retrieval and natural language processing in software engineer-
ing. In Proceedings of the 38th International Conference on Software Engineering
Companion. 898–899.

[22] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: using machine learning
to synthesize robust, reusable UI tests. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 269–282.

[23] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. IEEE, 215–224.

[24] Gregory Kuhlmann, Peter Stone, Raymond Mooney, and Jude Shavlik. 2004.
Guiding a reinforcement learner with natural language advice: Initial results in
RoboCup soccer. In The AAAI-2004 workshop on supervisory control of learning
and adaptive systems. San Jose, CA.

[25] Vu Le, Sumit Gulwani, and Zhendong Su. 2013. Smartsynth: Synthesizing smart-
phone automation scripts from natural language. In Proceeding of the 11th annual
international conference on Mobile systems, applications, and services. ACM, 193–
206.

[26] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: syntax-and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 593–604.

[27] Fei Li and HV Jagadish. 2014. Constructing an interactive natural language
interface for relational databases. Proceedings of the VLDB Endowment 8, 1 (2014),
73–84.

[28] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, Luke Zettlemoyer, and
Michael D Ernst. 2017. Program synthesis from natural language using recurrent
neural networks. University of Washington Department of Computer Science and
Engineering, Seattle, WA, USA, Tech. Rep. UW-CSE-17-03-01 (2017).

[29] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. 2018.
NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the
Linux Operating System. arXiv preprint arXiv:1802.08979 (2018).

[30] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew
Senior, Fumin Wang, and Phil Blunsom. 2016. Latent predictor networks for code
generation. arXiv preprint arXiv:1603.06744 (2016).

[31] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and
Jianjun Zhao. 2015. Codehow: Effective code search based on api understanding
and extended boolean model (e). In Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on. IEEE, 260–270.

[32] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55–60. http://www.aclweb.org/anthology/P/P14/P14-5010

[33] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: finding relevant functions and their usage. In Proceedings of the
33rd International Conference on Software Engineering. ACM, 111–120.

[34] George A Miller. 1998. WordNet: An electronic lexical database. MIT press.
[35] Peter Naur, John W Backus, Friedrich L Bauer, Julien Green, Charles Katz, and

John McCarthy. 1963. Revised report on the algorithmic language Algol 60.
Commun. ACM 6, 1 (1963), 1–17.

[36] Pengyu Nie, Junyi Jessy Li, Sarfraz Khurshid, Raymond Mooney, and Milos
Gligoric. 2018. Natural language processing and program analysis for supporting
todo comments as software evolves. In Workshops at the Thirty-Second AAAI
Conference on Artificial Intelligence.

[37] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code
from source code using statistical machine translation (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 574–584.

[38] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. 2016. Neuro-symbolic program synthesis. arXiv
preprint arXiv:1611.01855 (2016).

[39] Illia Polosukhin and Alexander Skidanov. 2018. Neural Program Search:
Solving Programming Tasks from Description and Examples. arXiv preprint
arXiv:1802.04335 (2018).

[40] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language to code:
Learning semantic parsers for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). 878–888.

[41] Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract Syntax
Networks for Code Generation and Semantic Parsing. In ACL (1). 1139–1149.
https://doi.org/10.18653/v1/P17-1105

[42] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing
What I Mean-Code Search and Idiomatic Snippet Synthesis. In Software Engineer-
ing (ICSE), 2016 IEEE/ACM 38th International Conference on. IEEE, 357–367.

[43] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. 2015. Compo-
sitional Program Synthesis from Natural Language and Examples.. In IJCAI.
792–800.

[44] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and
Mayur Naik. 2018. Syntax-guided synthesis of datalog programs. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 515–527.

[45] Armando Solar-Lezama and Rastislav Bodik. 2008. Program synthesis by sketching.
Citeseer.

[46] Yu Su, AhmedHassan Awadallah, Madian Khabsa, Patrick Pantel, Michael Gamon,
and Mark Encarnacion. 2017. Building natural language interfaces to web apis.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. ACM, 177–186.

[47] Tao Xie and Jian Pei. 2006. MAPO: Mining API usages from open source repos-
itories. In Proceedings of the 2006 international workshop on Mining software
repositories. ACM, 54–57.

[48] Navid Yaghmazadeh, YuepengWang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
query synthesis from natural language. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 63.

[49] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-
purpose code generation. arXiv preprint arXiv:1704.01696 (2017).

[50] Hao Yu,Wing Lam, Long Chen, Ge Li, Tao Xie, and QianxiangWang. 2019. Neural
detection of semantic code clones via tree-based convolution. In 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC). IEEE, 70–80.

[51] Juan Zhai, Xiangzhe Xu, Yu Shi, Minxue Pan, Shiqing Ma, Lei Xu, Weifeng
Zhang, Lin Tan, and Xiangyu Zhang. 2019. CPC: automatically classifying and
propagating natural language comments via program analysis. (2019).

[52] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

[53] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs documentation and code to detect directive
defects. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 27–37.

86

http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.18653/v1/P17-1105

	Abstract
	1 Introduction
	2 Background
	3 Overall Framework
	4 NLP and IR
	4.1 Domain Knowledge Constructor
	4.2 Query Processing via Amended NLP
	4.3 Pruning
	4.4 Intermediate Data Structures

	5 Grammar graph-based translation
	5.1 Semantic Mapping
	5.2 Longest-match Scheme
	5.3 Reversed All-paths Search
	5.4 Local Edge Reordering
	5.5 Candidate Paths Selection and Combination
	5.6 Code Generation

	6 Evaluation
	6.1 Methodology
	6.2 Accuracy of HISyn
	6.3 Error Analysis
	6.4 Threats to Validity

	7 Related Work
	8 Discussions
	9 Conclusion
	Acknowledgments
	References

