
Recurrent Neural Networks Meet Context-Free
Grammar: Two Birds with One Stone

1st Hui Guan
Computer Science

University of Massachusetts, Amherst
Amherst, MA, USA

huiguan@cs.umass.edu

2nd Umang Chaudhary
Computer Science

University of Massachusetts, Amherst
Amherst, MA, USA

uchaudhary@umass.edu

3rd Yuanchao Xu
Computer Science

North Carolina State University
Raleigh, NC, USA

yxu47@ncsu.edu

4th Lin Ning
Computer Science

North Carolina State University
Raleigh, NC, USA

lning@ncsu.edu

5th Lijun Zhang
Computer Science

University of Massachusetts, Amherst
Amherst, MA, USA

lijunzhang@cs.umass.edu

6th Xipeng Shen
Computer Science

North Carolina State University
Raleigh, NC, USA

xshen5@ncsu.edu

Abstract—Recurrent Neural Networks (RNN) are widely used
for various prediction tasks on sequences such as text, speed
signals, program traces, and system logs. Due to RNNs’ inher-
ently sequential behavior, one key challenge for the effective
adoption of RNNs is to reduce the time spent on RNN inference
and to increase the scope of a prediction. This work introduces
CFG-guided compressed learning, an approach that creatively
integrates Context-Free Grammar (CFG) and online tokeniza-
tion into RNN learning and inference for streaming inputs.
Through a hierarchical compression algorithm, it compresses
an input sequence to a CFG and makes predictions based on
the compressed sequence. Its algorithm design employs a set of
techniques to overcome the issues from the myopic nature of
online tokenization, the tension between inference accuracy and
compression rate, and other complexities. Experiments on 16
real-world sequences of various types validate that the proposed
compressed learning can successfully recognize and leverage
repetitive patterns in input sequences, and effectively translate
them into dramatic (1-1762×) inference speedups as well as much
(1-7830×) expanded prediction scope, while keeping the inference
accuracy satisfactory.

Index Terms—recurrent neural networks, data compression,
context free grammar, tokenization

I. INTRODUCTION

Recurrent Neural Network (RNN) is very effective in mod-

eling and predicting temporal sequences. It has been suc-

cessfully applied to a broad range of machine learning tasks.

Because of RNN’s high prediction accuracy, there is also an

increasing interest in applying RNNs for sequence prediction

tasks in other domains such as program analysis [1], data

prefetching and cache placement in computer architecture [2],

[3], memory management [4], network caching policy de-

sign [5], and system log analysis [6]. As tasks in these domains

have real-time or near real-time requirements, speeding up

RNN inference is an important problem.

Due to RNNs’ inherently sequential behavior, reducing

the time spent on RNN inference is a challenging problem.

Although many efforts have been taken to accelerate RNN

inference, for example by designing efficient model architec-

tures [7], model compression [8], and many other approx-

imations [9], the demands for higher speed remain as the

application domains and data volume for RNN keep expanding

dramatically. Our study showed that a 1-layer RNN model

takes milliseconds to predict the next event on GPUs while

prediction tasks in computer systems such as data prefetching

and cache replacement typically need results in nanoseconds.

The performance issue becomes worse when larger models are

used to achieve higher accuracy.

Moreover, demands for long-term large-scope predictions

are increasingly popular for RNN. Rather than predicting

only the next event, many uses of RNN desire predictions

of the next N (N > 1) events so that they can start

the preparations or take actions earlier. That is especially

important if the response (e.g., prefetching or system migra-

tion) takes time. There are some attempts to enable large-

scope predictions [10]–[12], but they are mostly from the

traditional angle, trying to adjust the RNN model architecture

or hyperparameters. The prior efforts in pursuing the two

important objectives of RNN inferences, improving its speed

and scope, have been largely going separately. Large room for

improvement remains in both.

In this paper, we present CFG-guided compressed learn-
ing, a novel method that, by integrating CFG and online

tokenization into RNN inference, simultaneously improves

the state-of-the-art on both objectives significantly. Unlike

popular Deep Neural Network (DNN) compression which

compresses DNN models, CFG-guided compressed learning

compresses input data sequences. It is applicable to sequences

that consist of many repeated subsequences. For instance, data

from sensors in a factory may show similar patterns along

time; system logs can have the same event sequences due to

repeated operations; the execution traces of a program often

manifest repeated patterns. The basic rationale is to compress

the data sequence by automatically identifying and reducing

1078

2021 IEEE International Conference on Data Mining (ICDM)

978-1-6654-2398-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDM51629.2021.00125

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

78
-1

-6
65

4-
23

98
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
51

62
9.

20
21

.0
01

25

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 15,2022 at 21:08:11 UTC from IEEE Xplore. Restrictions apply.

the repeated subsequences to an abstract format (i.e., a non-

terminal symbol in CFG). If the learner can directly learn and

make predictions on the compressed sequence, it may benefit

from the identified repetitions in both inference speed and

prediction scope.

There are three research questions (RQ) for realizing the

idea effectively:

• RQ1: How to compress a sequence to keep its statistical

properties such that RNNs can still learn patterns from

the compressed sequence?

• RQ2: How to conduct inference on an online generated

data sequence (that is not compressed) given that the

model is trained on the compressed sequences?

• RQ3: How to support continual model refinement in an

online fashion?

This paper presents the first known solution to these open

questions by proposing CFG-guided compressed learning.

It uses no domain knowledge and hence stays completely

domain-independent. It learns from compressed sequences and

predicts, at one time, not one single event but a sequence of

events, achieving both large speedups and also large prediction

scopes. It, meanwhile, offers an easy-to-use knob allowing

users to keep model accuracy at a satisfying level while

enjoying the speed and scope benefits.

CFG-guided compressed learning achieves these by intro-

ducing CFG and online tokenization into RNN inference.

Specifically, it answers RQ1 by employing CFG to compactly

represent the input data sequence while keeping it in a form

amenable for RNN-based learning. It does it by building on

an existing linear-time hierarchical compression algorithm,

Sequitur [13]. Both RNN training and inference can operate on

the CFG representation smoothly. It answers RQ2 by enabling

on-the-fly incremental compression via online tokenization as

new events arrive and, if necessary, calls the RNN model to

make predictions based on the tokenized event sequence. Each

prediction is a token in the dictionary, which can be a terminal

(one single upcoming event) or a non-terminal (a sequence

of upcoming events). It answers RQ3 through continuous
compression-based refinement which refines the RNN model

on the compressed sequence continuously and efficiently.

Overall, this work makes the following main contributions:

• To the best of our knowledge, this is the first work

integrating CFG and sequence compression into RNN

for both faster prediction and larger prediction scope on

streaming inputs.

• It proposes CFG-guided compressed learning as a novel

learning paradigm for RNN-based sequence modeling.

The algorithm is applicable to domains whose data se-

quences have repetitive patterns.

• It overcomes the issues caused by the myopic nature of

online tokenization through efficient rollback, addresses

the tension between compression rate and inference ac-

curacy through accuracy-conscious lowering, and mini-

mizes runtime overhead through partial compression.

• It empirically validates the benefits of compressed learn-
ing in improving both the prediction scope and the

inference speed of RNN.

II. COMPRESSED LEARNING ALGORITHM

Compressed learning learns from compressed sequences

either offline or online, and predicts not one single event

but a sequence of events. It builds on the grammar-based

compression algorithm Sequitur, which (incrementally) com-

presses a sequence into a Context-Free Grammar (CFG). The

learning and inference operate on a variant of the CFG.

Compressed learning has three stages: (1) offline compression

of the training sequences to build the vocabulary and com-

pressed sequences, (2) offline RNN training using compressed

sequences, and (3) online RNN inference and optional online

model refinements. The three stages are compatible with the

typical workflow for RNN-based application development.

In this section, we first introduce major complexities for

algorithm design, and then explain the general algorithm.

A. Issues for Algorithm Design
To make the compressed learning algorithm work in general

cases, we must address several issues.
Issue-1: Myopic nature of online tokenization. Tokeniza-

tion is short-sighted. Consider a simple example that has a

dictionary with only two entries:

T1: ab T2: abc

For an input sequence abcabc, suppose that the RNN predicts

T1 at the starting point. As the tokenizer sees the first two

events ab, it tokenizes them into token T1, and feeds it to

the RNN. The RNN would then update its hidden state and

make a prediction of the next token, say another T1. But when

the third event c arrives, the tokenizer may realize that the

first two events ab are actually part of a larger token T2 (for

abc). So for the RNN to make predictions based on T2, the

compressed learning must be able to deal with the premature

tokenizations and allow the RNN to undo its state changes

when necessary. Such an issue may appear whenever some

tokens in a directory are the prefixes of other tokens.
Issue-2: Runtime compression overhead. To refine the RNN

at runtime, online compression is needed to generate the

compressed sequences so that they can be used to continuously

train the RNN model on the fly. Although the refinement is

only optional, it is still necessary to minimize the runtime

overhead in online compression to maximize the performance

benefits of compression learning.
Issue-3: Traps of large tokens. Although a large token could

help enable large-scope predictions for its representation of

a long subsequence, it could also form a trap. It is because

large tokens tend to appear less frequently in the compressed

sequence, which makes it harder for RNN to learn about the

patterns in the compressed sequence. The compressed learning

hence must be able to deal with the tradeoff between token

granularities and frequency.

B. Algorithm
In this part, we present the full algorithm of compression

learning while highlighting how the three main issues are

addressed in the design.

1079

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 15,2022 at 21:08:11 UTC from IEEE Xplore. Restrictions apply.

The first two stages in compressed learning produce a

vocabulary V and an offline-trained RNN model M . The

vocabulary V contains both non-terminal symbols V N in com-

pressed sequences and all the terminal symbols (i.e., unique

events) V E in uncompressed sequences, i.e., V = V N ∪ V E .

Each non-terminal symbol represents a subsequence of events,

vN = vE1 , · · · , vE|vN |, where vEi ∈ V E . For the description

purpose, we simplify the notation of an event vE to e, and

refer to both vN ∈ V N and e ∈ V E as a token. As

the first two stages are straightforward applications of the

Sequitur compression and standard RNN training, we focus

our discussion on the third stage.

Problem definition. The problem of the online prediction

is that, given an already emitted sequence of events s =
e1, · · · , et, our trained model M shall be able to predict the

upcoming events v∗t+1 = et+1, · · · , et+|v∗
t+1| ∈ V such that:

v∗t+1 = argmax
v

Pr(e1, · · · , et, v|M), (II.1)

where Pr(.|M) calculates the probability of the occurrence

of a sequence given model M . Here, v∗t+1 can be either a

non-terminal symbol that represents a sequence of events or a

terminal symbol that represents a single event.

Algorithm description. Figure 1 outlines the online infer-

ence and model refinement algorithm of compressed learning.

Specifically, at a newly emitted event e, the following happens.

1) Tokenization: The algorithm (line 24 in Figure 1) to-

kenizes e in the context of the earlier events. For a given

sequence, a finite state machine (F in Figure 1 line 15) tries

to find a token in the vocabulary, the content of which matches

with the given sequence. The tokenization subroutine appends

the recognized token to the end of the tokenized sequence C;

sometimes its old suffix may need to be replaced because a

longer match is found.

Rollback (solution to Issue-1). The tokenizer helps track

the starting point (C.cursor) of the part of C that has not

yet been fed into the predictive model M . The replacement

of C’s suffix (the part following ♦) in tokenization could

necessitate the update of the cursor. If the current position

of the cursor is in the suffix replaced by the new token, the

cursor is updated to the position right before the new token.

To make M be able to overcome the premature tokenization

and conduct predictions based on the new token, compressed

learning records the recent hidden states of M in memory so

that M can easily rollback its hidden state to the state it had

at the new cursor position.

2) Prediction when necessary: After getting the new token,

the algorithm (line 26 in Figure 1) checks whether it is time to

make a prediction. There are two cases when a new prediction

happens: (a) the predicted event for this time point does not

match the newly arrived event, which indicates a prediction

error; (b) the predicted sequence ends at this time point. In

other cases where the prediction is correct so far and the next

event is already covered by the recent prediction, there is no

need to make a new prediction.

1. // Predict and learn with compression
2. Input:
3. P: trace generator
4. V: initial vocabulary
5. M: initial predictive model
6. Output:
7. M: updated predictive model
8. V: updated vocabulary
9. Constants:
10. START, EOF: markers of the start and end of input
11. L: length of a learning interval
12. FREQ: the minimum frequency for a word to get into the vocabulary
13.
14. // create a tokenizer F to recognize the token in V
15. F = tokenizerCreation (V)
16. n = 0 // count the number of events
17. C = emptyList // store the tokenized sequence
18. i = 0
19. v = M.predict(START) // predict the upcoming subsequence of events
20. C.cursor = 1 // track the end of the part of C that has been used by M
21. while (e = P.generate () != EOF) { // a new event is produced
22. n ++
23. // recognize the new token and update C, M
24. Tokenize (F, e, C, M)
25. // if e doesn’t match the predicted or the prediction is exhausted
26. if (!matches(e, v[i]) || i == v.len-1) {
27. // predict the next token (i.e., a subsequence)
28. v = M.predict (C[C.cursor : C.len])
29. C.cursor = C.len
30. i=0
31. }
32. else { // no prediction needed
33. i ++
34. }
35. if (n == L){
36. // compress the tokenized sequence seen so far,
37. // update tokenzied sequence and return new tokens V_
38. V_ = PartialCompress(C)
39. M.train (C) // update the predictive model M
40. F.update (V_) // update the tokenizer with the new words
41. V.append (V_) // update the vocabulary
42. C = []
43. n = 0
44. }
45. }

Fig. 1. Algorithm of compressed learning for online inference and optional
model refinement.

3) Model refinement: Compressed learning supports contin-

uous model refinement. After a certain interval, the algorithm

refines the predictive model with the compressed sequence of

that interval, as lines 35 to 44 in Figure 1 shows.

Partial compression (solution to Issue-2). The learning

starts with compressing the new subsequences in C. A basic

design is to run Sequitur on the entire sequence C. But as the

tokenizations already compress some parts of the sequence,

subroutine PartialCompress (line 38) compresses only the

uncompressed parts which could save compression time. The

subroutine first extracts out all the new subsequences in C
that do not match non-terminal tokens. Rather than running

Sequitur on each of them, our design is to concatenate them

together such that one run of Sequitur would suffice. It is

important to notice that simple concatenation can cause wrong

compression results, as the subsequences are not actually

consecutive but Sequitur could be misled by the concatenated

sequence to group the end of a subsequence and the start

of another subsequence into one token. To avoid the issue,

we insert distinctive symbols at the end of a subsequence as

1080

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 15,2022 at 21:08:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SEQUENCE STATISTICS. (EVERY SEQUENCE CONTAINS 500K EVENTS.)

Sequences Compression
ratio (X)

#non-terminal
symbols

token length stats
No. Name min mean max

1 fluid-calls 3759.4 6 4 1507.3 8192
2 go-calls 12.2 436 2 14.3 80
3 molecule-calls 96.0 155 2 78.2 1024
4 perl-calls 79.8 116 2 88.4 1880
5 ocean-calls 747.4 27 2 293.7 2194
6 waves-calls 2066.1 16 2 1051.1 8192
7 fluid-mem 2487.6 8 2 1128.9 5120
8 go-mem 86.2 30 2 339.8 3216
9 molecule-mem 4.3 980 2 10.6 85

10 ocean-mem 5.0 916 2 11.7 71
11 perl-mem 13.4 216 2 36.0 577
12 waves-mem 3.5 29 2 16.4 88
13 windows-log1 28.7 213 2 53.3 914
14 windows-log2 29.7 269 2 34.3 469
15 thunderbird-log1 17.0 403 2 22.1 2048
16 thunderbird-log2 20.9 428 2 17.1 1536

∗ The frequency threshold in the lowering step is set to 5 when the reported
statistics are collected. token length stats consider only non-terminals in the
compressed seq; a token is a sequence of events. X-calls: function call seq.;
X-mem: memory address traces; X-log: system logs.

separators,

Accuracy-Conscious Lowering (solution to Issue-3).
Lowering is an important step for striking a good tradeoff

between token granularity and frequency. It, from the CFG,

derives a compressed sequence friendly to RNN training

(both offline and online). It recursively conducts a depth-first

expansion of tokens in an input compressed sequence (s). If a

token’s frequency is no smaller than a threshold (FREQ), the

subroutine stops expanding it, and puts it into the vocabulary

as a valid token. Such a design avoids unnecessary expansions

to keep the sequence as compact as possible while meeting the

frequency requirement. The frequency threshold (FREQ) is a

hyperparameter that adjusts the tradeoff between the compres-

sion rate and the frequency of tokens. During offline training,

compressed learning uses binary search to automatically find

the suitable frequency threshold that meets a user-specified

accuracy requirement.

III. EVALUATION

We conducted a set of experiments to examine the efficacy

of the proposed technique, trying to answer the following

questions: (1) How much benefit can we get from compressed

learning for inference speed and prediction scope? (2) How

does compressed learning affect the model quality? (3) What

is the runtime overhead of incremental tokenization for online

inference?

A. Methodology

Datasets. When collecting traces for the experiments, in order

to get a comprehensive assessment of the technique, we try to

ensure that the traces (i) come from the real-world workloads

or systems; (ii) exhibit a spectrum of regularities; (iii) cover

several different types of events and domains.

Table I lists the sixteen traces we experiment with. They

are of three types: The first six are function call sequences,

the second six are memory address traces (in 64-byte data

blocks), and the final four are system log traces. Prediction

on these sequences can help guide just-in-time optimizations,

prefetching, and system anomaly detection.

Counterparts for comparisons. Since CFG-guided com-

pressed learning is generally applicable to domains whose se-

quences have repetitive patterns, we use standard RNN-based

sequence modeling used in these domains as our baselines.

Specifically, we compare our compressed learning (denoted

as ours) with the following two default approaches.

(1) Default learning with 1-event prediction (default-1). This

method trains the RNN using the un-compressed sequence
and predicts only the next single event at one prediction. The

number of predictions it has to make is the same as the number

of events in a test sequence.

(2) Default learning with k-event prediction (default-k). This

method trains the RNN using the un-compressed sequence but

has the same prediction scope as our compressed learning has.

Models. The RNN model used in the experiments of all the

methods is the same. It consists of an embedding layer with

an embedding dimension of 256, a GRU layer with 1024

units, and a fully-connected output layer. We train an RNN

model for each sequence. For offline training, the RNN models

are trained with ADAM using an input length of 100 for

all methods. If online training is enabled, the models are

refined for one epoch on each interval (i.e., 50,000-length

event sequence) with an input length of 100.

Hyperparameters. Compared to default RNN training, the

only extra hyperparameter introduced by compressed learning

is the frequency threshold (FREQ) used in the lowering step.

We used binary search to determine the best FREQ that meets

a user-specified accuracy requirement while achieving good

inference speedups.

Metrics. Our evaluation uses the following three metrics. (i)

The speedup over the inference time (i.e., averaged time spent

on predicting the next event) taken by default-1 when all

runtime overhead is counted in. (ii) The prediction scope,

which is the average length of a prediction. (iii) The prediction
accuracy, which is the ratio between the # of correctly

predicted events over the total number of events.

B. Results

Table II reports the online prediction results of compressed

learning and its comparison with the two default approaches.

The user-specified tolerable accuracy drops are 0% and 1%,

with respect to default-1. The results are averaged over five

runs with different random seeds. Standard deviation of event

accuracy varies from zero to 1.9%.

Table II shows the clear benefits from our compressed learn-

ing on both prediction scope and speed. The prediction scope

increases from one in default-1 to hundreds or even thousands

of events (as the “avg. pred length” column shows), and the

inference time decreases by up to three orders of magnitude

1081

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 15,2022 at 21:08:11 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ONLINE PREDICTION RESULTS OF COMPRESSED LEARNING AND ITS COMPARISON WITH DEFAULT APPROACHES THAT USE UNCOMPRESSED SEQUENCES.

Sequences
spec. acc.
drop

FREQ
avg. pred
length

#predictions #rollbacks
tokenization
overhead (%)

avg. latency∗ (ms) prediction
speedup (×)

event accuracy (%)
ours default-1 ours default-k default-1

fluid-calls
0% 2 7830 35 0 0.20680 0.036

4.340
120.9 99.9984 99.9984

99.9984
1% 2 7830 35 0 0.20680 0.036 120.9 99.9984 99.9984

perl-calls
0% 50 31 8916 522 0.00017 0.132

3.701
28.1 99.74 98.54

99.89
1% 5 133 7372 1180 0.00018 0.082 45.3 99.57 98.59

molecule-calls
0% 50 30 8572 722 0.00044 0.179

3.582
20.0 99.67 95.86

99.6
1% 5 91 4393 1099 0.00287 0.071 50.5 99.5 77.37

ocean-calls
0% 500 17 14677 191 0.00007 0.209

3.726
17.9 99.89 99.51

99.95
1% 5 200 5136 725 0.00282 0.084 44.5 98.94 44.59

wave-calls
0% 20 4798 4070 21 0.00616 0.246

3.707
15.1 83.74 83.76

83.76
1% 20 4798 4070 21 0.00616 0.246 15.1 83.74 83.76

go-calls
0% 20000 1 248732 2132 0.00001 3.608

3.608
1 87.4 87.59

87.59
1% 5000 2 229512 3767 0.00001 3.280 1.1 86.68 70.47

fluid-mem
0% 5 2500 100 0 0.05676 0.002

3.551
1762 99.96 89.53

99.97
1% 5 2500 100 0 0.05676 0.002 1762 99.96 89.53

go-mem
0% 5 78 3336 55 0.00001 0.054

3.611
66.4 98.82 91.49

99.04
1% 5 78 3336 55 0.00002 0.054 66.4 98.82 91.49

perl-mem
0% 20 81 6273 105 0.00014 0.086

3.630
42.2 99.48 98.52

98.74
1% 20 81 6273 105 0.00014 0.086 42.2 99.48 98.52

ocean-mem
0% 20 4 83383 3640 0.00002 1.478

3.954
2.7 81.63 75.93

81.3
1% 5 6 78782 1166 0.00004 1.236 3.2 80.69 72.37

wave-mem
0% 500 2 193050 1902 0.00001 3.084

3.700
1.2 79.32 64.71

79.56
1% 5 5 85957 1416 0.00001 1.233 3 79.1 50.71

molecule-mem
0% 2000 1 250000 0 0.00001 3.625

3.625
1 93.3 93.36

93.36
1% 1000 2 210869 1495 0.00000 3.296 1.1 92.05 73.69

windows-log1
0% 200 11 40930 3768 0.00004 0.605

3.750
6.2 95.13 88.91

95.91
1% 20 31 24391 6996 0.00017 0.364 10.3 93.25 79.54

windows-log2
0% 100 14 38781 4636 0.00005 0.716

4.009
5.6 95.37 90.62

96.49
1% 20 23 29882 9836 0.00012 0.617 6.5 95.08 91.81

thunderbird-log1
0% 1000 3 109977 4580 0.00011 1.521

4.014
2.6 93.91 94.02

94.02
1% 200 10 40933 2445 0.00026 0.628 6.4 92.37 84.93

thunderbird-log2
0% 20000 1 250000 0 0.00001 3.531

3.531
1 92.45 92.52

92.52
1% 1000 2 135229 11498 0.00007 1.962 1.8 91.04 83.53

*avg. latency: averaged time spent on predicting the next event. default-1 and default-k have the same avg. latency.

(as the “prediction speedup” column shows). Getting benefits

on both aspects at the same time shall be no surprise. The

larger prediction scopes entail the need for fewer predictions,

and hence the much-reduced prediction time.

In comparison, when the default method extends its pre-

diction scope to the same as the compressed learning has,

significant accuracy loss appears (e.g., 54% accuracy loss on

ocean-calls), as the “default-k” column shows. Moreover,

to predict k events, default-k still needs to make k predictions;

so it saves no prediction time at all.

The exact amount of speedups by compressed learning

varies from sequence to sequence, depending on how often

repetitive patterns show up in the sequence, which is intuitive.

What is satisfying is that for traces with regular patterns, com-

pressed learning can indeed tap into the potential, effectively

recognizing the patterns and translating them into dramatic

speedups, as typified by the results on the traces of fluid .

On the other hand, on irregular traces, the method can still

achieve the target accuracy while causing no slowdowns, as

shown by the function call sequence of go, the random tree

search application.

The effectiveness of the technique holds across domains

and sequence types. The benefits are more pronounced on

function call and memory traces than on system logs, due to

the less regularity in the system logs. But it is worth noting that

even on system logs, the benefits are still significant, 1–10.3×
speedups of inference and up to 31× larger prediction scopes.

To achieve the same prediction scopes, default-k suffers up to

16% accuracy drops while giving no speedups.

Runtime overhead of online tokenization. The myopic na-

ture of online tokenization incurs a number of rollbacks in

compressed learning for most sequences, as the “#rollbacks”

column in Table II shows. But in fact, rollbacks do not

cause extra invocations of predictions. The time overhead of a

rollback consists of only the switch of one single reference (to

point to an earlier data block that holds the recent hidden state

of the RNN), which is negligible. That explains the significant

speedups despite the many rollbacks in compressed learning.

The other source of runtime overhead is the time spent on

tokenization for online prediction. The results are listed in

column “tokenization overhead (%)” of Table II. Overall, this

tokenization overhead is negligible, less than 0.2% compared

to the total amount of prediction time (the time spent on the

RNN model plus online tokenization) for all sequences.

IV. RELATED WORK

Deep learning on compressed inputs. There are some studies

on deep neural network (DNN) training and inference with

compressed input data, but all on images and convolutional

1082

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 15,2022 at 21:08:11 UTC from IEEE Xplore. Restrictions apply.

neural network (CNN) [14]–[16]. In Natural Language Pro-

cessing (NLP), the representation of inputs sometimes uses

some tokens to represent some common phrases. An example

is Byte Pair Encoding (BPE) [17] used in subword tokeniza-

tion. These representations are at the word or phrase level,

offering no systematic ways to identify patterns in a long

sequence of events and code them concisely. Moreover, as

those studies work on separate sentences instead of continuous

event streams, rather than online tokenizing inputs continu-

ously, they use a preprocessing step to first tokenize the entire

sentence before feeding it to the DNN. They are not applicable

to streaming event sequences. To the best of our knowledge,

this work gives the first proposal of compressed learning for

RNNs on streaming event sequences.

DNNs for program traces. Some recent works have proposed

applying DNNs on program traces for program behavior

prediction. A study [3] uses an offline attention-based LSTM

model to provide insights for designing a simple online

hardware cache replacement policy. Another study [2] applies

sequence learning to prefetching and proposes using LSTM

to understand the semantic information of the underlying

application given a memory access trace. A recent work [4]

proposes an RNN-based page scheduler for programs that

execute over hybrid memory systems. None of them have

considered learning from the compressed traces.

DNNs for system logs. Recent years have seen a growing

interest in applying Deep Learning models in analyzing system

logs. One study [6] proposes Deeplog, which leverages LSTM

for online anomaly detection. Another work [18] proposes to

use RNN with the attention mechanism for anomaly detection.

Some other work [5] builds an RNN-based content caching

framework to predict the popularity of content objects on

information-content networks. Wang and others [19] used

RNNs to predict the probability that a user will access a

particular activity given their historical access logs. No prior

work has proposed learning from compressed log sequences.

V. CONCLUSION

This paper presents CFG-guided compressed learning, the

first known approach to integrating sequence compression into

RNN learning and inference for both expanded prediction

scope and reduced inference latency. It builds on CFG and

online tokenization, and addresses a series of complexities

through the design of efficient rollback, accuracy-conscious

lowering, partial compression, and other techniques. By dis-

covering and leveraging patterns in a sequence effectively, it

enables much faster inferences while achieving a substantially

expanded prediction scope on 16 real-world sequences with

repetitive patterns. Future work includes generalizing com-

pressed learning to other autoregressive models and recent

architectures such as Transformers.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the UMass

Startup Fund, the National Science Foundation (NSF) under

Grants CNS-1717425, CCF-1703487, CCF-2028850, and the

Department of Energy (DOE) under Grant DE-SC0013700.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of NSF or DOE.

REFERENCES

[1] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, portable and fast basic block throughput estimation using deep
neural networks,” in International Conference on Machine Learning.
PMLR, 2019, pp. 4505–4515.

[2] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
in International Conference on Machine Learning, 2018.

[3] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to
the cache replacement problem,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019.

[4] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, and
A. Gavrilovska, “Kleio: A hybrid memory page scheduler with machine
intelligence,” in Proceedings of the International Symposium on High-
Performance Parallel and Distributed Computing, 2019, pp. 37–48.

[5] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“Deepcache: A deep learning based framework for content caching,” in
Proceedings of the 2018 Workshop on Network Meets AI & ML, 2018,
pp. 48–53.

[6] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017, pp. 1285–1298.

[7] D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased lstm: Accelerating recurrent
network training for long or event-based sequences,” in Advances in
neural information processing systems, 2016, pp. 3882–3890.

[8] M. S. Zhang and B. Stadie, “One-shot pruning of recurrent
neural networks by jacobian spectrum evaluation,” arXiv preprint
arXiv:1912.00120, 2019.

[9] L. Liu, L. Deng, Z. Chen, Y. Wang, S. Li, J. Zhang, Y. Yang, Z. Gu,
Y. Ding, and Y. Xie, “Boosting deep neural network efficiency with
dual-module inference,” 2020.

[10] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-
decoder architecture,” in 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2018, pp. 1672–1678.

[11] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as beam-
search optimization,” arXiv preprint arXiv:1606.02960, 2016.

[12] H. Cheng, P.-N. Tan, J. Gao, and J. Scripps, “Multistep-ahead time series
prediction,” in Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer, 2006, pp. 765–774.

[13] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical
structure in sequences: a linear-time algorithm,” Journal of Artificial
Intelligence Research, vol. 7, pp. 67–82, 1997.

[14] L. Gueguen, A. Sergeev, B. Kadlec, R. Liu, and J. Yosinski, “Faster
neural networks straight from jpeg,” in Advances in Neural Information
Processing Systems, 2018, pp. 3933–3944.

[15] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan, “Deepn-
jpeg: A deep neural network favorable jpeg-based image compression
framework,” in Proceedings of the 55th Annual Design Automation
Conference, 2018.

[16] X. Xie and K.-H. Kim, “Source compression with bounded dnn percep-
tion loss for iot edge computer vision,” in The 25th Annual International
Conference on Mobile Computing and Networking, 2019.

[17] P. Gage, “A new algorithm for data compression,” C Users Journal,
vol. 12, no. 2, pp. 23–38, 1994.

[18] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” in Proceedings of the First Workshop on Machine Learning
for Computing Systems, 2018, pp. 1–8.

[19] H. Wang, Z. Wang, and Y. Ma, “Predictive precompute with recurrent
neural networks,” arXiv preprint arXiv:1912.06779, 2019.

1083

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 15,2022 at 21:08:11 UTC from IEEE Xplore. Restrictions apply.

