
Enabling Near Real-Time NLU-Driven Natural
Language Programming through Dynamic Grammar

Graph-Based Translation
Zifan Nan

Department of Computer Science
North CarolinaState University
Raleigh, North Carolina, USA

znan@ncsu.edu

Xipeng Shen
Department of Computer Science

North CarolinaState University
Raleigh, North Carolina, USA

xshen5@ncsu.edu

Hui Guan
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, Massachusetts, USA

huiguan@cs.umass.edu

Abstract—Recently, natural language (NL)-based program
synthesis has drawn increasing interest. Conventional methods
that depend on some predefined domain-specific rules suffer from
the lack of robustness and generality. Recent efforts on adopting
deep learning to map queries to code requires a large number of
labeled examples, making them not applicable on domains with
scarce labeled examples. Although a third alternative, natural
language understanding (NLU)-driven approach addresses the
problems, the long response time hinders its adoption in practice,
especially in an interactive scenario. This paper presents a solution
to enable near real-time NLU-driven NL programming. The
solution features a new algorithm, dynamic grammar graph-
based translation (DGGT), for identifying the best grammar tree
for a query via dynamic programming. It also introduces two
new optimizations, grammar-based pruning and orphan node
relocation, to further reduce the search space and address the
special complexities from queries. Evaluations on two domains,
text editing and program source code analysis, show that the
DGGT algorithm and the optimizations shortens the response
time of a state-of-the-art NLU-driven synthesizer by up to 1887×
(25-133× on average) while improving the accuracy by 2-12%.

Index Terms—Natural language programming, program syn-
thesis, dynamic programming

I. INTRODUCTION

Recently, natural language (NL)-based program synthesis (or
called NL Programming) has drawn lots of research interest.
Given NL descriptions (also called queries) from users, NL-
based synthesizers automatically generate desired codelets. A
codelet is often an expression in either a Domain-Specific
Language (DSL) or some domain-specific APIs. Figure 1 shows
a simple example.

Allowing the use of intuitive NL-based inputs offers con-
veniences to general users (e.g. in the IoT domain) who do
not need to learn programming in the DSL. It can also serve
as part of an Integrated Development Environment (IDE) to
offer quick hints to programmers especially when the domain
of interest contains a large number of API functions that are
difficult to memorize (e.g., Android API [10], ASTMatcher in
Compilers [7]).

Conventional methods mostly fall into two categories:
rule-driven and sample-driven methods. Rule-driven methods

Figure 1. An example of NL programming using VSCode.

depend on some predefined domain-specific rules. Sample-
driven methods feature the reliance on many labeled query-
codelet pairs as training data to build up some statistical models.
The rule-based approach had shown some success in the early
stage of the field development (e.g., Smartsynth [26]), but have
gradually lost attractions due to the lack of robustness and the
difficulties in generalizing across domains. The data-driven
approach has dominated recent efforts, represented by the
adoption of deep learning to map NL queries to code via various
neural networks (e.g., [2], [15], [30], [38], [39]). Although
this approach has shown more promise than the previous rule-
driven approach, its requirement of large numbers of labeled
examples hinders its adoptions, especially for domains where
labeled examples are scarce. Although recent proposals show
the possibility of generating examples for a certain domain [3],
it is yet unclear how well these methods can generate truly
representative examples in complex domains.

Recently, a third alternative, NLU-driven approach, has been
proposed [34], [35]. This approach is driven by natural lan-
guage understanding (NLU). It is inspired by how human codes.
Rather than going through tens of thousands of examples as
data-driven approach does, it centers around natural language
understanding of the domain-specific language or APIs of
interest—just like how humans learn programming, and hence

978-1-6654-0584-3/22 © 2022 IEEE

Accepted for publication by IEEE. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

278

query* codelet
Neural Networks

query

codelet

Existing

NLU tools

understanding

documents

Grammar-guided

synthesis

*: some preprocessing may be used

(a) Sample-driven approach

(b) NLU-driven (Human learning-inspired) approach: isolate complexities

Many training query-
codelet pairs

Figure 2. By isolating complexities and leveraging existing NLU tools, NLU-
driven method foregoes the needs for many training samples.

foregoes the need for many labeled training data. It achieves
it by isolating complexities and leveraging existing NLU tools,
as Figure 2 shows.

The NLU-driven approach is appealing: It avoids the
difficulties and the cost in collecting a large number of training
samples while achieving similar accuracies as the sample-
driven approach achieves [34], [35]. Moreover, it makes an NL
programming solution much easier to extend: When the APIs
in the target domain change (e.g., new functionalities are added
into a smartphone), an NLU-driven solution needs no retraining
on new training samples; it needs only the incorporation of
the updated document of the changed APIs.

But the current NLU-driven approach is slow. When syn-
thesizing 200 cases in TextEditing [9] domain, 38% of cases
needs more than one second to produce the result; around 18%
cases need more than 20 seconds. Among these cases, five of
them are not finished even after 20 minutes.

The speed limitation of the NLU-driven approach is a major
roadblock for its adoption in practice. NL programming is often
used in an interactive scenario, such as in a smart home, vehicle,
or IDE, where the slow response of the current NLU-driven
approach is intolerable.

The problem is challenging, fundamentally due to the nature
of the code generation process in NLU-driven NL programming.
Unlike the use of statistical models to directly map queries
to code, the NLU-driven approach generates code by finding
the best grammar tree that connects all the key elements in
the query in a way both syntactically and semantically sound.
As the possible grammar trees in a domain are exponential to
the size of the grammar, the space is huge for a non-trivial
domain.

This paper presents a solution to the problem, which speeds
up the state of the art by up to 133times and for the first time
makes NLU-driven NL programming possible for interactive
uses. As a lossless algorithm-level optimization, it uses no
more computing units and loses no accuracy.

At the core of the solution is dynamic grammar graph-
based translation (DGGT), a new algorithm for identifying the
best grammar tree for a query. DGGT is inspired by Dynamic
Programming, an approach that solves an optimization problem
by breaking it down to simpler subproblems and utilizing the
optimal solution to its subproblems to identify the optimal

solution to the overall problem. It memorizes the optimal
solutions to subproblems to avoid redundant computations and
achieve high efficiency. A key step in DGGT is to generate
the optimal code generation tree (CGT) based on the query
dependency graph. DGGT decomposes the problem into the
subproblems of finding the optimal partial CGT and then
generates the optimal CGT by joining the optimal partial CGT
recorded in a dynamic grammar graph structure.

Besides DGGT, the solution introduces two new optimiza-
tions, grammar-based pruning and orphan node relocation,
which further reduces the search space and addresses some
special complexities from queries respectively. These optimiza-
tions, coupled with an existing optimization (size-based early
pruning), effectively save more than 90% of computations for
complex queries.

We evaluate the techniques on two domains, text editing,
and program source code analysis. The results show that the
optimizations shorten the response time of a state-of-the-art
NLU-driven synthesizer by up to 1887× (25-133× on average),
while improving the accuracy by 2-12% for the fewer timeout
cases. It, for the first time, removes the barriers for NLU-driven
NL programming to serve for interactive tasks.

Overall, this work makes the following major contributions:

• It offers the first systematic study on the efficiency issues
of NLU-driven NL programming, and provides a solution
that for the first time enables near real-time NLU-driven
NL programming.

• It proposes a novel algorithm dynamic grammar graph-
based translationfor NLU-driven NL programming that
significantly reduces the computational complexity.

• It introduces two new optimizations, grammar-based
pruning and orphan node relocation, for efficient NLU-
driven NL programming.

• It demonstrates the effectiveness of the proposed solution
through a set of experiments on two domains, showing
that the techniques can shorten the average synthesis time
by up to 133X.

II. PREREQUISITES AND BACKGROUND

This section reviews the background of NLU-driven NL
programming, based on HISyn [34], the state-of-the-art NLU-
driven code synthesizer. The input to an NLU-driven code
synthesizer consists of three items: (i) NL query, such as
“insert a string at the start of each line” in a text editing
domain; (ii) a document that contains all the APIs and their
descriptions, such as the reference to ASTMatcher1; (iii) the
context-free grammar of the target domain, written in Backus-
Naur form (BNF) and converted to a directed graph called
grammar graph. Figure 4(a) shows part of the grammar graph
of a text editing domain. The output of the synthesizer is a
codelet that implements the intent expressed in the input query
with the APIs in the target domain.

The workflow consists of six steps, as shown in Figure 3.

1https://clang.llvm.org/docs/LibASTMatchersReference.html

279

• Step-1: Dependency parsing. It is an NLP technique for
identifying the dependency relations among words. The
outcome is an query dependency graph for the input query.
A dependency relation is composed of a subordinate word
(called dependent), a word on which it depends (called
governor), and an asymmetrical grammatical relation
between the two words (called dependency type). A
dependency relation is marked as an arrow pointing
from a governor to a dependent and is labeled with the
dependency type. In the example in the top left in Figure 3,
the arrow from “insert” to “string” with the label “obj”
indicates that “string” is an object of “insert”. Each node
in the query dependency graph contains a word in the
query.

• Step-2: Query graph pruning. This step prunes the non-
essential words from the query dependency graph based
on the Part-Of-Speech (POS) of words and their relations,
producing a pruned dependency graph (top middle in
Figure 3).

• Step-3: WordToAPI. This step tries to find all the APIs
in the target domain that may semantically match each
query word in the pruned dependency graph. It does it by
matching the query words with the descriptions of each
API via NLU techniques, producing a WordToAPI map
(top right in Figure 3).

• Step-4: EdgeToPath. This step tries to find the set of
paths on the grammar graph (called grammar paths) that
corresponds to each edge in the pruned dependency graph.
It does it through a reversed all-path search. For edge
2 “insert”→“string” in the pruned dependency graph in

Figure 3, for instance, the search starts from the grammar
graph node that contains one of the candidate APIs of
“string”, and follows the grammar graph backward until
reaching a node that contains one of the candidate APIs
of “insert”; the grammar path is then recorded in the
EdgeToPath map. It does this for every candidate API of
each node in the pruned dependency graph.

• Step-5: PathMerging. This step enumerates every combi-
nation of the grammar paths of all the edges in the pruned
dependency graph. For each combination, it tries to merge
the grammar paths to form a tree, called code generation
tree (CGT). The merging process fuses the same nodes
or edges into one.

• Step-6: TreeToExpression. This step finds the smallest
CGT, traverses it in a depth-first order, and puts the
API contained in the nodes together to form the final
expression. The children of a node are regarded as
parameters of the API in their parent node.

III. OVERVIEW OF OPTIMIZATIONS

This section presents some observations on the performance
issues of the current NLU-driven synthesis, and the key insights
in our solutions for resolving the performance bottleneck.

A. Bottleneck

Among the six steps of the current NLU-driven analysis,
step five is the most time-consuming step. It enumerates all the
combinations of the candidate grammar paths corresponding to
all the dependency edges in the pruned dependency graph. In
an query dependency graph, assume that the l-th level has el
dependency edges and each edge corresponds to pl number of
path candidates in a grammar graph. The current NLU-driven
synthesis algorithms enumerate all paths, with

∏
l pl

el path
combinations in the worst case and the overall computational
complexity is O(

∏
l pl

el). For a non-trivial query with 4
dependency levels with el = 4 dependency edges per level and
pl = 4 candidate paths per dependency edge, there are four
billion combinations. The number grows exponentially as the
complexity of the query increases. Our empirical measurements
confirm that for the queries that take the current NLU-driven
synthesizer HISyn more than two seconds to process, this step
dominates the execution time, weighing 90.24% of the total
time.

B. Key Insights

(i) The bottleneck analysis shows that to make NLU-
driven synthesis usable in interactive scenarios, the key is
in speeding up step 5. A key insight underlying our solution
is that there is lots of overlap among the combinations of the
grammar paths. For instance, assume that this step merges the
grammar paths of three dependency edge {e1, e2, e3} with each
dependency edge having two grammar paths. We denote the
six paths as {p1a, p1b}, {p2a, p2b}, {p3a, p3b}. There are hence
eight combinations: {p1a, p2a, p3a}, {p1a, p2a, p3b}, ... These
combinations have lots of overlaps: {p1a, p2a}, for instance,
appears in two of them. Merging each of the eight combinations
hence incurs repeated merging operations on those overlapped
paths.

Therefore, in the previous algorithm, lots of repeated work
has been spent on processing the same branches and nodes in
the combinations. So the first and most important insight of our
solution is in the design of a data structure (dynamic grammar
graph) and algorithm optimization (DGGT) to effectively
avoid the redundant work in the combinations. Inspired by
dynamic programming, DGGT decomposes the problem into
the subproblems of finding the optimal partial CGT and then
generates the optimal CGT by joining the optimal partial CGT
recorded in a dynamic grammar graph structure.

(ii) A second observation is that due to the “or” relations
in grammar rules, many combinations produced in step 5
are syntactically incorrect and ruled out in later steps. For
instance, the non-terminal node pos has two derivations
POSITION and START, which are exclusive from each other.
If one combination has two path containing both derivations,
that combination must be syntactically incorrect. The second
insight underlying our optimization is that intelligent use of
the grammar may prevent many of the incorrect combinations
from being produced at the first place. It is the basis of our
optimization grammar-based pruning.

280

: {query}

: {INSERT}

: {STRING}

: {START, STARTFROM}

: {LINESCOPE}

: {;}

①

②

③

④

⑤

: {query→command→… →INSERT,

 query→…→ INSERT, }

: {INSERT→insert_arg→… →STRING,

 INSERT→… →STRING }

Query graph
pruning

Input query: “Insert ‘;’ at the start of each line.”

NL dependency parsing

WordToAPI

EdgeToPath

query

Documents of the target domain

Grammar graph of the target domain

LINESCOPESTART

;

query

….

INSERT

STRING

…

LINESCOPESTART

… …

.

;

Many other CGTs

Query dependency graph

QueryWords : Candidate APIs

: Candidate grammar paths

Pruned dependency graph

: {INSERT→insert_arg→… →START,

 INSERT→… →STARTFROM }

: {INSERT→… →LINESCOPE}

: {STRING→ “;”}

TreeToExpression

 Synthesized expression:

 INSERT(STRING(;), START, LINETOKEN)

1
2 3

4

6
PathMerging

…

5

root

insert

string start line

;

⓵

⓶
⓷

⓸

⓹

root

insert

string

start

line

;

root insert

insert string

insert

line

start

insert

string ;

QueryEdges :

EdgeToPath Map

WordToAPI Map

Code generation trees (CGTs)

Figure 3. Workflow of existing NLU-driven NL programming (HISyn). (The full version of the EdgeToPath map is shown in Figure 5(b).)

(iii) The third observation is that for some queries, the
dependency parsing makes mistakes, giving wrong dependence
relations between some words. Consequently, some nodes in
the dependency graph become “orphans”, that is, no valid
edges connect them with the rest of the parsing result. To
avoid missing the valid grammar paths involving these orphans,
the current NLU-driven synthesis algorithm finds all paths
in the grammar graph from the orphan to the root of the
grammar. That treatment gives out many candidate grammar
paths and increases the computational complexity. The third
insight in this work is that a suitable use of the grammar can
actually rule out many invalid paths that involve orphans, and
hence significantly reduce the complexity. It is the basis of our
optimization orphan node relocation.

These three optimizations, DGGT, grammar-based pruning
and orphan node relocation, form a synergy. They work
together seamlessly, drastically reducing the computation
complexity and execution time of NLU-driven synthesis. We
next explain them each in detail.

IV. DYNAMIC GRAMMAR GRAPH-BASED TRANSLATION
(DGGT)

This section presents DGGT, a new algorithm to avoid
redundant work in the bottleneck (step 5) of NLU-driven
synthesis. We start by introducing a set of terms used in the
algorithm, and then elaborate the algorithm. We postpone the
discussion of the computational complexity in Section VI after
the other optimizations are also introduced.

A. Path-Voted Grammar Graph
To prepare for understanding DGGT, we first give some

more detailed explanation of grammar graph, and introduce a
new term path-voted grammar graph.

A grammar graph is a graph representation of a context-
free grammar (CFG) (T : terminals, NT : non-terminals, S:
start symbol, P: production rules). Figure 4(a) shows part of
the grammar graph of the Text Editing DSL [9]. We use the
following production rules in the DSL to explain grammar
graph.

insert arg ::= string pos iter
string ::= STRING
pos ::= POSITION | START

There are three types of nodes in a grammar graph. Node
“insert arg” in Figure 4(a), for instance, is a non-terminal
node representing a non-terminal symbol in the grammar; node
“string pos iter” is a derivation node representing the entire
right-hand side of a production rule (i.e., the “insert arg” rule);
node “STRING” (in red) is an API node representing the
name of an API function in the DSL. There are two types
of edges. Solid-headed edges (e.g., those from “insert arg” to
“string”, “pos”, and “iter”) are concatenation edges representing
concatenations of the sibling nodes; hollowed-headed edges
(e.g., those from “pos” to “POSITION” and “START”) are

“Or” edges representing the alternative relations among the
siblings.

A key operation in NLU-driven synthesis is to find a grammar
path on the CFG that matches (i.e., nodes semantically match)
with an edge on the query dependency graph. Edge 2
(insert→ string) in Figure 4(a), for instance, matches with
two candidate paths in the CFG in Figure 4(c). They are
shown as paths 2.1 and 2.2 in Figure 4(b). If we label an
edge in a CFG with the candidate grammar paths that cover it,
we get a path-voted grammar graph, as shown in Figure 4(c).
We say that an edge has more votes if it is covered by more
grammar paths. We will see how the votes can help DGGT

281

(c) Path-voted grammar graph w/
related nodes

query

...

insert_arg

string, pos, iter

...

INSERT

pos

string

STRING

STRING

1.1 [query, command, command, insert,

	 	 insert, INSERT, INSERT]

1.2 [query, seq, SEQ, SEQ, command_1, command,

	 	 insert, insert, INSERT, INSERT]

2.1 [INSERT, insert_arg, (string, pos, iter),

	 	 string, STRING, STRING]

2.2 [INSERT, insert_arg, (string, pos, iter), pos,

	 	 POSITION, POSITION, pos_arg,

	 	 AFTER, AFTER, string, STRING, STRING]

3.1 [INSERT, insert_arg, (string, pos, iter), pos,

	 	 START, START]

3.2 [INSERT, ..., (string, pos, iter), ...,POSITION,

	 	 pos_arg, STARTFROM, STARTFROM]

4.1 [INSERT, insert_arg, (string, pos, iter),..., ITER,

	 	 linesope, LINESCOPE, LINESCOPE]

5.1 [STRING, ";"]

(b) Path candidates of each

voting dependency edge.

 Nonterminal node Derivation node API node "or" edge Concatenation edge Index of path that

vote to this edge

POSITION

POSITION

START

START

pos_arg

AFTER STARTFROM

AFTER

2.1

2.1, 2.2

2.2, 3.1, 3.2

2.2, 3.2

2.2

2.2

2.1, 2.2, 3.1, 3.2

2.1, 2.2

1.1

STARTFROM

1.1

1.1

3.1

3.12.2, 3.2

2.2, 3.2

3.2

3.2

iter

...

LINESCOPE

2.1, 2.2, 3.1, 3.2

4.1 4.1

4.1

";"
5.1

query

...

insert_arg

string, pos, iter

...

(a) Grammar graph

INSERT

pos

string

STRING

STRING

POSITION

POSITION

START

START

pos_arg

AFTER STARTFROM

AFTER STARTFROM

iter
...

LINESCOPE

<str>

REPLACE Remove Print

replace_arg remove_arg print_arg

...
...

...

Before

END

END

...

BEFORE

Figure 4. The grammar graph (a) and the path voted grammar graph (c) of the editing domain annotated by the grammar paths (b) of the example query in
Figure 3.

";" 5.1

START

STARTFROM

LINESCOPE

2.1

3.1
4.1

3.2

4.1

STRING
min_size: 1

min_cgt: 5.1

Partial CGT #1
min_size: 4 + 1 = 5

min_cgt: [2.1, 3.1, 4.1]

Partial CGT #2
min_size: 5 + 1 = 6

min_cgt: [2.1, 3.2, 4.1]

1.2

1.1 root
min_size: 5

min_cgt: 1.1

min_size: 4 + 1 = 5

min_cgt: partial CGT #1

INSERT

2.1

Level 3 Level 2 Level 1

Figure 5. The dynamic grammar graph of the example in Figure 4. (Fields min size and min cgt are omitted for nodes whose min size is 0.)

take effects.
If after the candidate paths of all dependency edges are

fused (by merging common nodes and edges), they form a tree,
we call the tree a code generation tree (CGT). By definition,
a CGT is a subgraph of the CFG. A CGT can be hence
reformatted into a grammar valid codelet in the DSL.

For quick references, we summarize the three important
acronyms as follows:

CFG Context-free grammar
CGT Code generation tree

DGGT Dynamic grammar graph-based translation

B. Dynamic Grammar Graph-Based Translation

Recall that the goal of the NLU-driven synthesis is to identify
the smallest CGT (for the shortest code to be produced) for a
given query dependency graph by examining the CFG. Such
a CGT (i) covers all the semantic inside the query, and at
the same time (ii) carries the minimum unmentioned semantic.
With these two conditions, the generated CGT is more likely to

represent the semantic meaning of input NL queries faithfully.
The reversed all-path search in step four in Figure 3 searches
for the paths that correspond to each dependency edge, which
ensures that the created CGTs fulfill the first condition. The
selection of the smallest CGT in steps 5 and 6 satisfies the
second condition.

In identifying the smallest CGT, instead of enumerating
all the candidate CGTs as the current NLU-driven synthesis
does [34], DGGT breaks the synthesis problem into sub-
problems, by generating the optimal partial CGTs for each
level of the query dependency graph via bottom-up dynamic
grammar graph generation, and then combining these partial
CGTs into the final CGT via the optimal CGT backtrack.

We next present a central data structure dynamic grammar
graph. It is used in DGGT to record optimal partial CGTs and
to backtrack. We then present the main algorithm.

1) Dynamic Grammar Graph: There are three kinds of
nodes in a dynamic grammar graph. NAPI is the set of nodes
that represent APIs; NPCGT is the set of nodes that represent

282

Algorithm 1: DGGT algorithm
Input : query dependency graph dg, grammar graph gg
Result : the optimal code generation tree and synthesized

code

1 Function DGGT(dg, gg)
// Bottom-up dynamic grammar graph

generation
2 new DynamicGraph dyng
3 add start node and leaf API node into dg
4 foreach level in dg from bottom to top do
5 Let e : n1 → n2 be an edge at the current level
6 if n1 ∈ dg has a single child n2 then
7 create Nai in dyng for each candidate API ai of

n1

8 foreach grammar path ∈ EdgeToPath(e) do
9 create a path edge (Nbj → Nai) in dyng

where bj is a candidate API of n2

10 foreach Nai do
11 update its min cgt and min size with the

smallest partial CGT
12 else if n1 in dg has multiple children then
13 comb = the set of combinations of the grammar

paths of n1’s children
14 comb = grammar based pruning(comb)
15 comb = size based pruning(comb)
16 foreach c in comb do
17 merge the paths in c into a tree pt, and

create node Npt in dyng;
18 update min cgt and min size of Npt;
19 create node Nroot in dyng for the root of pt

if it does not exist;
20 connect Npt with the nodes in dyng that

correspond to the leaves of pt;
21 connect Npt with Nroot

22 update min cgt and min size of Nroot

23 Backtrack dyng to create the optimal CGT and generate
code

partial CGTs; Nstart is the start node of the dynamic grammar
graph. Figure 5 is the dynamic grammar graph of the example
in Figure 4; the three types of nodes are represented by round-
cornered rectangles, circles, and triangles respectively.

There are two kinds of edges in a dynamic grammar graph.
Epath = {(NAPI1 → NAPI2)} ∪ {(NAPI → NPCGT)} is
the set of path edges, with each representing one grammar
path between two APIs or between an API and a partial CGT.
Its length is the number of APIs on the path. Edefault =
{(Nstart → NAPI)} ∪ (NPCGT → NAPI)} is a set of
auxiliary edges whose lengths are regarded as zero. A path
edge carries the ID of the corresponding grammar path, while
an auxiliary edge carries no IDs, as shown in Figure 5.

2) Main Algorithm: At the core of the DGGT algorithm
is the construction of a dynamic grammar graph through a
bottom-up traversal of the pruned dependency graph. The
nodes in the dynamic grammar graph record the optimal
partial CGT from the start node to this node. So after the
construction, it takes just a simple backtracking to generate
the desired code expression. Algorithm 1 outlines the DGGT
algorithm. We explain it in detail while drawing on the pruned
dependency graph in Figure 3 (top middle) as an example.

Step 1: dynamic grammar graph construction through a
bottom-up traversal. This step traverses the pruned dependency
graphs in a bottom-up order to generate a dynamic grammar
graph (lines 2-22 in Algorithm 1). For the example in Figure 3,
the algorithm starts from edge 5 in level-3, then moves to
the 3 sibling edges (2 , 3 , and 4) in level-2, and finally
reaches 1 in level-1.

Initially, the dynamic grammar graph has a single node
Nstart. For each leaf node in the pruned dependency graph
whose candidate APIs are a1, a2, · · · , an, the algorithm gen-
erates API nodes {Nai} and edges {Edefaulti = (Nstart →
Nai)} (line 3) and put them into the dynamic grammar graph.
In Figure 4(c), the leaf node “;” for instance leads to the
creation of the “;” node in the dynamic grammar graph in
Figure 5 and the auxiliary edge from the start node to it. The
leaf node “start” in the dependency graph leads to the creations
of the “START” and “STARTFROM” nodes (for “start” has
two APIs in the Word2API map in Figure 3 (top right)) and
the edges to them from the start node in Figure 5, and the
“LINETOKEN” node is created because of the leaf node “line”
in the dependency graph.

Then from the leaf nodes in the pruned dependency graph,
the algorithm visits one level up each time. In the process, it
treats edges with siblings and without siblings differently. (We
say that an edge e1 has a sibling edge e2 if they share the
same source node but have different sink nodes.)

Case I: a dependency edge e from n1 to n2 has no siblings.
This case is simpler. We just need to create nodes to denote
the candidate APIs of n1 and add them into the dynamic
grammar graph. Specifically, suppose in the WordToAPI map,
n1 has candidate APIs a1, a2, · · · , an and n2 has candidate
APIs b1, b2, · · · , bm. Because the visit is bottom up, by this
time, the dynamic grammar graph shall already have nodes
corresponding to bj (j=1,2,· · · ,m). The algorithm creates a
node for each ai and adds the nodes into the dynamic grammar
graph, denoted as Nai (i=1,2,· · · ,n). It adds edges {Epk

=
(Nbj → Nai)} into the dynamic grammar graph to represent
the grammar paths pk between ai and bj , where k is the
ID of the grammar path (lines 5-9). An example is the node
“STRING” in Figure 5 and the edge from “;” to “STRING”.
Note, it is possible that EdgeToPath(e) contains multiple
grammar paths. They are handled in the same way. After the
algorithm finishes processing all the grammar paths of e, an
important step is to record the optimal partial CGT from the
start to the newly added nodes2. This step is made efficient
in a way similar to dynamic programming. Every node in
the dynamic grammar graph has two fields, min_cgt and
min_size. The field min_cgt records the optimal partial
CGT from the start node to this node. The field min_size
records its size. An optimal partial CGT is the smallest CGT
from the start to this node, that is, the CGT covers the smallest
number of APIs (illustrated later). So, when we try to find the

2It is a graph, but turns into a tree rooted at the newly added node after
the start node is omitted.

283

optimal partial CGT for the newly added ai nodes, the existing
bj nodes should already have both fields set. The algorithm
can then compute the size of the partial CGT to ai via bj by
just adding the size of the grammar path from bj to ai into the
min_size of bj . It can hence quickly find out the optimal
partial CGT of ai and its size, and record them in its own
fields (lines 10-11).

For instance, in Figure 4(c), the query dependency edge
5 has only one grammar path [STRING→“;”]. When

traversing the dependency edge 2 in level-3, we create a node
NSTRING and a path edge Epath5.1 = (N; → NSTRING)
in the dynamic grammar graph. NSTRING records that the
minimum size of the partial CGT is 1 as the represented
grammar path 5.1 has only one API. Similarly, when traversing
the dependency edge 1 in level-1, we create a node Nroot

for the root node and two edges in the dynamic grammar graph
for the two grammar paths that connect the root node to the
INSERT in the grammar graph. The min size of Nroot is set
to 5, and the path ID is 1.1.

Case II: a dependency edge e from n1 to n2 has siblings. It
means that the grammar paths of these sibling dependency
edges must have common predecessors. For example, the
grammar paths 2.1 and 3.1 in Figure 4(b) share the same
predecessors, nodes INSERT and insert_arg. It usually
indicates that some of the APIs in the sibling nodes are
arguments of a common API.

This case is trickier to handle. It is because the partial CGT
would need to accommodate the APIs of all those siblings. If
we still use one node to represent only one API as in Case I,
it would not allow us to record the information of the partial
CGT. Moreover, because in the EdgeToPath map, one edge
in the pruned dependency graph may have multiple grammar
paths, the sibling edges can form multiple partial CGTs.

Our solution is to introduce a special type of node (partial
CGT node) into the dynamic grammar graph, with each node
recording one combination of the grammar paths of the sibling
edges. For instance, the two eclipses in Figure 5 represent the
combinations of the paths {2.1, 3.1, 4.1} and {2.1,3.2,4.1}
respectively. Edges are added to represent the grammar paths.
For each combination, the algorithm merges the common
predecessors of the grammar paths to form a prefix tree, and
then uses the size of the tree (i.e., the number of APIs it
contains) and the min_size of the predecessor nodes to
figure out the size of the partial CGT and record the minimum
partial CGT and the size in its fields.

After the constructions of a partial CGT node, the algorithm
further creates an API node to represent the root of the prefix
tree if it does not yet exist, such as the “INSERT” node in
Figure 5, and uses auxiliary edges to connect the partial CGT
node with this API node. It is needed in the processing of
the dependence edges on the next level which expects edges
between API nodes.

Merging grammar paths to form a prefix tree has three
steps (lines 14-21 in Algorithm 1). For the combinations of
the paths from each sibling dependency edge, the first two

steps prune the grammarly incorrect combinations and the over-
sized combinations; the third step generates the prefix tree for
the remaining combinations. We postpone the details to later
sections.

We use the example in Figure 4 to give a full illustration
of the operations on Case II. Dependence edges 2 , 3 ,
4 are sibling edges. After pruning, there are two path

combinations left, c1 = {2.1, 3.1, 4.1} and c2 = {2.1, 3.2, 4.1}.
For each combination, we merge the paths and create a
prefix tree. Nodes NPCGT1

and NPCGT2
are created

for each prefix tree respectively. Six path edges such as
Epath2.1 = (NSTRING → NPCGT1) are created to link the
APIs nodes and the partial CGT nodes. Since the two prefix
trees have common root API INSERT, we create the API
node NINSERT and two auxiliary edges to link the two partial
CGT nodes and their root node NINSERT. For node NINSERT,
the optimal partial CGT is partial CGT #1 with minimum size
of 5 and the corresponding node is NPCGT1 .

Step 2: Optimal CGT backtrack. Optimal CGT backtrack
aims to generate the optimal CGT by backtracking the dynamic
grammar graph and joining the optimal partial CGTs in each
level. Since each API node NAPI records the optimal partial
CGT, we can backtrack the dynamic grammar graph and join
all the recorded partial CGTs to create an optimal CGT. (In
Figure 5, the edges involved in the backtrack is colored in
red.)

From the description, we can see that the dynamic grammar
graph produced by DGGT concisely subsumes the CGTs from
all possible combinations of the candidate paths. Its dynamic
programming style allows it to evade repeated subtree merging
and examinations while allowing the fast generation of the
minimum CGT—one of the key reasons for it to dramatically
outperform previous NLU-driven synthsis algorithms [34]
which enumerates and examines all possible CGTs.

V. OPTIMIZATIONS

Besides the DGGT algorithm, we introduce two new opti-
mizations to further reduce the computation cost.

A. Grammar-Based Pruning

The first optimization is grammar-based pruning, which
prunes grammarly incorrect path combinations during the
creation of prefix trees (line 14 in Algorithm 1) for sibling
dependency edges. The pruning leverages the alternation
relations among “or” edges in a grammar graph.

Recall that in a grammar graph, hollowed-headed edges (e.g.,
those from “pos” to “POSITION” and “START” in Figure 4(a))
are “or” edges representing alternative relations among the
siblings. Given a set of “or” edges that share the same non-
terminal node as sinks, only one of the ‘or’ edges should be
selected at a time to produce the CGT. If in a CGT, one non-
terminal node has more than one “or” edge appearing in the
CGT, the CGT must be grammarly incorrect. These “or” edges
are called conflict “or” edges. Two candidate paths are called

284

a conflict paths pair if merging the two paths leads to conflict
“or” edges.

Our algorithm identifies conflict paths pairs as follows. It
merges common prefix nodes on all the candidate grammar
paths of sibling edges. During the merging, it records the path
ID on each edge in the prefix tree. It then checks the grammar
of each non-terminal node. If there are two or more “or” edges
under that node, the algorithm generates conflict path pairs
based on the path ID of each of the “or” edges. After getting
all the conflict paths pairs, it prunes the combinations that have
any of the conflict path pairs.

For example, Figure 4(c) shows the prefix tree for the sibling
dependency edges 2 , 3 , 4 in 4(a), with path ID recorded.
In this all-path prefix tree, there are two pairs of conflict “or”
edges [e1 = (pos → POSITION), e2 = (pos → START)]
and [e3 = (pos_arg → AFTER), e4 = (pos_arg →
STARTFROM)]. For the pair [e1, e2], paths p2.2 and p3.2 use
e1, and path p3.1 uses e2. The conflict paths pair [p2.2, p3.1].
[p3.1, p3.2] are from the same dependency edge so they cannot
exist in one combination. Similarly, for the pair [e3, e4], there
are conflict paths pair [p2.2, p3.2]. By pruning the combinations
that have conflict paths pairs, this optimization avoids many
unnecessary computations.

B. Orphan Node Relocation

The other optimization we introduce in this work is orphan
node relocation. Due to the complexity in queries or NL
parsing errors, in some cases, an edge e = (ni, nj) in a pruned
dependency graph has no candidate path in the grammar graph
that connects their candidate APIs; it implies that ni is not the
“real” governor of nj . We call nj an orphan node.

The previous NLU-driven synthesis algorithm [34] simply
regards an orphan node as the child of the root in the pruned
dependency graph. As a result, the synthesis algorithm would
find all the paths on the grammar graph from the node’s
candidate APIs to the grammar root node. It often leads to
a larger number of candidate paths and causes inefficiency.
Moreover, it could lead to cross-level prefixes. The DGGT
algorithm assumes that the candidate paths of dependency
edges in one level (e.g. edge 2 , 3 , 4 in Fig. 4(a)) have
no common nodes with those in other levels (i.e. 1 and
5). This is because if cross-level prefixes exist, the optimal

partial CGTs will have overlaps and need to be merged. It
would affect the size of the joined CGT; the CGT generated
via joining optimal partial CGT from each level could become
suboptimal.

We designed an algorithm, orphan node relocation, to
address the issue. The algorithm relocates orphan nodes in
an pruned dependency graph before DGGT is applied. The
main idea is to use the knowledge from the grammar graph to
determine the proper locations of orphan nodes. In a pruned
dependency graph, suppose that that there is a dependency
edge e = (n1 → n2) and the two dependency nodes n1 and
n2 are mapped to two API nodes nA1 and nA2 respectively.
Then in the grammar graph, all the paths from nA1 to nA2 are

insert

string start line

root
1

2 3 4

";"
5

insert

string

line

startroot
1

2

check path

Orphan
node

";"

Figure 6. An illustration of orphan relocation.

the candidate paths of e. So if nA2 is the descendent of nA1

in the grammar graph but n2 is an orphan node in the pruned
dependency graph, it suggests that an edge e = (n1 → n2)
should exist in the pruned dependency graph. Our algorithm
adds such an edge and uses the augmented pruned dependency
graph as the input to DGGT. Since an orphan node could have
several candidate APIs, there could be many valid locations
for the node inside the pruned dependency graph. In this case,
the algorithm creates different pruned dependency graphs and
synthesizes them separately. The smallest CGTs is chosen from
all these pruned dependency graphs.

Figure 6 illustrates the orphan node relocation step. Both
nstart and nline are orphan nodes. In the grammar graph
shown in Figure 4(a), the API INSERT (mapped to ninsert)
is the ancestor of API START (mapped to nstart) and API
LINESCOPE (mapped to nline). The algorithm can hence
relocate the orphan nodes nstart and nline as the dependent
of the node ninsert.

C. Other Optimizations

Another more detailed optimization in DGGT happens after
enumerating all the path combinations, before merging the
combinations. It prunes paths based on the size of a path
combination. For a path p, the size of p is the number of
APIs in the path, denoted as size(p). Then for a collection of
candidate paths, it is easy to see that the size of the merged
combination c = {p1, p2, ..., pn} must meet the following:
len(

⋃n
i=1{a|APIs in pi}) ≤ size(c) ≤

∑n
i=1 size(pi)−(n−

1). The maximum size of the combination is reached when only
the first node of each path can be merged. The minimum size is
reached when all the common APIs in each path can be merged.
Then for all the possible combinations, C = {c1, c2, · · · , cm},
we calculate the minimum max size among all the combi-
nations as an upper bound for the size of each possible path
combination: C.min size = minmi=1 (ci.max size). So for a
path combination c, if c.min size > C.min size, then the
prefix tree of this combination is not worth creating as it is
definitely not the minimum tree. For example, in Figure 5,
after grammar-based pruning (described next), the remaining
combinations are c1 = [2.1, 3.1, 4.1], c2 = [2.1, 3.2, 4.1].
c1.min size = 5, c1.max size = 5, while c2.min size = 6,
c2.max size = 6. Since c2.min size > c1.max size, we
can hence directly prune c2.

VI. COMPUTATIONAL COMPLEXITY

In an query dependency graph, assume that the l-th level has
el dependency edges and each edge corresponds to pl number
of path candidates in a grammar graph. Previous NLU-driven

285

[0,0.1)[0.1,0.4)[0.4,1) [1,2) [2,4) [4,16) [16,20) [20, ..)
time interval (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
pe

rc
en

ta
ge

 o
f c

as
es

(a)ASTMatcher

DGGT-laptop
DGGT-server
HISyn-laptop
HIsyn-server

[0,0.1)[0.1,0.4)[0.4,1) [1,2) [2,4) [4,16) [16,20) [20, ..)
time interval (s)

0.0

0.2

0.4

0.6

0.8

pe
rc

en
ta

ge
 o

f c
as

es

(b)TextEditing

DGGT-laptop
DGGT-server
HISyn-laptop
HIsyn-server

Figure 7. Execution time comparison.

synthesis algorithms enumerate all paths, with
∏

l pl
el path

combinations in the worst case and the overall computational
complexity is O(

∏
l pl

el). In the DGGT algorithm, the time
complexity for generating partial optimal CGT for each level of
an query dependency graph is O(pell) in the worst case. Then
by joining the partial optimal CGTs, the time complexity of the
DGGT algorithm becomes only O(

∑
l pl

el). The optimizations
further reduce the cost.

VII. EVALUATIONS

To evaluate the efficacy of DGGT, we conduct a set of
experiments on two domains. We focus on answering the
following research questions: (Q1) How much efficiency benefit
can the techniques bring to NLU-driven code synthesis? (Q2)
Does the DGGT algorithm affect the synthesis accuracy? (Q3)
How much does each of the optimizations contribute to the
speedups?

A. Methodology

Domains, Dataset, and Baselines. We experiment with
two domains, ASTMatcher [7] in Code Analysis and Text
Editing [9]. Table I lists the basic information of both domains
and several example queries and code expressions from each
domain. We compare to the most recent NLU-driven solution
HISyn [34]. For comparison, the used query sets are the same
as those used in the prior work [34].

Evaluation Metrics. We use synthesis time (t) to evaluate
the performance of the DGGT and HISyn algorithms and use
speedup t(HISyn) /t(DGGT) to measure the improvement
brought by DGGT. Besides, we report DSL codes synthesis
accuracy, which is the ratio between the number of correctly
synthesized DSL code expressions and the number of total test
cases. A synthesized DSL code is correct if it is identical to the
ground truth code in terms of both the set of APIs, arguments,
and their relative order.

Hardware. We conduct our experiments on two different
machines: a laptop with 2.6GHz 6-Core Intel® Core(TM) i7
CPU and 16GB RAM; a server machine with 2.20GHz Intel®

Xeon® Silver 4114 CPU and 128GB RAM.

B. Experimental Results

1) Synthesis Efficiency: In this experiment, we set 20
seconds as the timeout limit for processing one query. If the
synthesizer fails to finish in time, we stop synthesizing, regard it
an error case and record 20sec as the execution time. We choose

0 10 20 30 40 50 60 70 80
Number of cases

0

5

10

15

20

25

30

35

Su
m

 o
f e

xe
cu

et
io

n
tim

e
(s

)

(a)ASTMatcher

DGGT
HISyn

0 25 50 75 100 125 150 175
Number of cases

0

20

40

60

80

100

120

140

Su
m

 o
f e

xe
cu

et
io

n
tim

e
(s

)

(b)TextEditing

DGGT
HISyn

Figure 8. Accumulated execution time (on Laptop).

20sec as time limit because previous studies have shown that
“10 seconds is about the limit for keeping the user’s attention
focused on the dialogue” [37]. Therefore, a response longer
than 10 seconds would lose its usability significantly in an
interactive scenario. We hence choose 20 seconds as the cut-off
time to well cover the critical range of tolerable delays.

Table II reports the overall performance and accuracy of
HISyn and DGGT. (The accuracy of HISyn differs from
the accuracy reported in the previous paper [34] because
the previous work uses hours as the timeout limit which
is unreasonable for interactive usage.) Figure 7 provides the
distributions of the response times.

Overall, in both domains, DGGT runs much faster than
HISyn. In ASTMatcher domain, on laptop and server, DGGT
completes 73.8% and 72.7% of the cases in less than 0.1s; only
6.3% and 9.1% of the cases take more than 1s. For HISyn,
only 58.8% and 57.1% of cases take less than 0.1s; 15.0% and
19.5% of cases needs more than 1s to synthesis. In TextEditing
domain, on laptop and server, DGGT completes 88.5% and
86.7% of the cases in less than 0.1s; only 4.9% and 3.2% of
the cases take more than 1s. For HISyn, 45.1% and 43.1% of
the cases take less than 0.1s; 35.1% and 38.3% of cases needs
more than 1s to synthesis. We further show the accumulated
execution time in Figure 8. The accumulated execution time
time(x) shows the total time needed to synthesis the codes
from case 0 to x. The curves of DGGT raise much slower than
those of HISyn.

To answer the research question Q1, we measure speedup
brought by the DGGT algorithm over HISyn for each test case.
The result is shown in Table II. In the TextEditing domain, the
maximum speedup is 1887x, in which case, it costs HISyn 16.4s
to synthesis the correct code, but costs DGGT only 0.00869s.
The average speedup in the TextEditing domain is 133.2x,
and the median is 12.86x . In the ASTMatcher domain, the
maximum speedup is 537.7x, the average speedup is 25.02x,
and the median is 3.463x.

The performance comparison between HISyn and DGGT
on server is similar to that on the laptop, demonstrating the
portability of the benefits from DGGT.

2) Synthesis Accuracy: The synthesis accuracy (Q2) of
DGGT are 76.5% and 79.1% in the two domains on the laptop,
exceeding the accuracy of HISyn which are 74.7% and 67.5%

286

Table I
TESTING DOMAINS AND TEST CASES

Domain Source Description #APIs #Queries Example queries and code expressions

TextEditing [9]

A command language
that aims to free Office
suite application end-
users from understan-
ding syntax and se-
mantics of regular
expressions, condi-
tionals, and loops

52 200

1) Append “:” in every line containing numerals.
- INSERT(STRING(:), END(), IterationScope(LINESCOPE(),

BConditionOccurrence(CONTAINS(NUMBERTOKEN()), ALL())))
2) if a sentence starts with “–”, add “:” after 14 characters

- INSERT(STRING(–), Position(AFTER(CHARTOKEN()),
IntegerSet(INTEGER(14))), IterationScope(LINESCOPE(),

BConditionOccurrence(STARTSWITH(STRING(Exercise)), ALL())))
3) Remove the 3rd and 4th line

- REMOVE(SelectString(LINETOKEN(), BConditionOccurrence(ALWAYS(),
IntegerSet(INTEGER(3), INTEGER(4)))), IterationScope(LINESCOPE(),

BConditionOccurrence(ALWAYS(), ALL())))
4) Put ’+’ at the beginning of 2nd, 6th line

- INSERT(STRING(+), START(), IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), IntegerSet(INTEGER(2), INTEGER(6)))))

ASTMatcher [34]

A tool in Clang/LLVM [8]
for constructing Abstract
Syntax Trees (AST)
Matching expressions
to find code patterns
of interest.

505 100

5) find cxx constructor expressions which declare a cxx method named “PI”
- cxxConstructExpr(hasDeclaration(cxxMethodDecl(hasName(“PI”))

6) serach for call expressions whose argument is a float literal
- callExpr(hasArgument(floatLiteral()))

7) list all binary operators named “*”
- binaryOperator(hasOperatorName(“*”))

Table II
PERFORMANCE COMPARISON. (20SEC TIMEOUT)

Domain H/W Speedup (X) Accuracy
Max Mean Median HISyn DGGT

AST-
Matcher

Laptop 537.7 25.02 3.463 0.744 0.765
Server 611.9 32.72 4.038 0.737 0.769

Text-
Editing

Laptop 1887 133.2 12.86 0.675 0.791
Server 1911 102.6 10.00 0.67 0.75

Table III
DETAILED RESULTS OF DGGT ALGORITHM ON 4 CASES.

Ex.
ID

of
dep
edge

HISyn DGGT Time
Speedup

(X)
of
orig.
path

of
comb.

After orph reloc Optimize
of
path

of
comb.

gram.-
based

size-
based

remain
comb.

1 5 388 3.8e6 71 3744 3545 182 17 8186
2 7 555 1.3e10 179 673920 673500 4 416 1902
3 4 472 2.9e5 62 7600 7368 0 232 1887
4 6 880 2.8e9 103 226800 226714 0 86 >2748

respectively. The results on the server are similar. Theoretically,
as DGGT only accelerates the synthesis process in HISyn, it
should produce identical synthesis results in all the cases and
hence has the same accuracy as HISyn has. Things change
when timeout is considered, as a timeout is an error. DGGT
has fewer timeout cases and hence higher accuracy.

3) Case Study: To examine the reasons for the dramatic
speedups that DGGT brings (Q3), we report in Table III detailed
results on 4 cases. The queries are the No.1-4 examples in
Table I. Take case 1 as an example. In its query dependency
graph, there are 5 dependency edges and 388 paths in total.
The word lines and contains are two orphan nodes. There are
as many as 3,810,240 possible combinations. In DGGT, after
orphan relocation, the number of total paths reduces to 71. For
levels with sibling edges, there are 3744 combinations, the
grammar pruning removes 3545 (94.7%) of them. Then for
the left 199 cases, size-based pruning removes 182 (91.4%) of
them. For the remaining 17 combinations, DGGT merges the
paths to prefix trees and chooses the smallest prefix trees as

the optimal partial CGTs. It then joins them with the optimal
partial CGTs of other levels. The previous algorithm takes 85.7
seconds to synthesize, while DGGT takes only 0.0105 seconds.
Cases 2, 3 and 4 share the same optimization pattern with case
1. In case 4, HISyn did not finish synthesize within 20min,
while DGGT gives the correct result in 0.436 sec. Therefore,
the speedup is as much as 2748×.

According to Table III, the orphan node relocation can
reduce the number of candidate paths in the query dependency
graph by selecting proper governor for orphan nodes. The
optimizations, grammar-based pruning and size-based pruning,
further help avoid over 90% of combinations. DGGT needs to
generate only a small number of prefix trees for the remaining
combinations. These greatly reduce the execution time, bringing
a huge speedup in challenging cases.

4) Error Analysis and Discussion: It is worth nothing that
even though the synthesis accuracy is not perfect, as previous
studies have mentioned [9], such results can be already useful
in reducing the burden of general users. The technique, for
instance, can be integrated into an IDE, offering a list of ranked
candidate expressions for the programmer to choose when she
types in her intent in natural language.

VIII. RELATED WORK

In prior work, NLP has been used in software maintenance
and other software engineering tasks [1], [4], [12], [13], [16],
[22], [36], [48], [49], [51]. Here we focus on work closely
related with code synthesis.

Various specifications are used for code synthesis. A speci-
fication can be first order logic expressions [19], [24], a set of
examples [17], [18], [43], natural language [9], [20], [26], [27],
[42], [47], partial programs [14], [44] or any other form that
is easier to write than the expected program. We concentrate
on work on program synthesis from natural language (NL).

Besides NLU-driven NL programming [34], there are rule-
based and data-driven methods developed in prior work.
Example rule-based work includes smartphone automation [26],
SQL queries [28], [47], and SpreadSheet data analysis [20].

287

Many recent studies have pursued modern machine learning
for NL programming [2], [6], [9], [11], [15], [21], [23], [25],
[29]–[31], [38]–[40], [42], [45], [50]. For example, Chen [6]
has applied LSTM-based sequence-to-sequence model with
other specifications for code synthesis. Desai and others [9]
have presented a general framework for constructing program
synthesizers based on a domain-specific language (DSL)
definition and training data. Quirk [40] uses the semantic
mapping approach which learns to map natural-language
descriptions of “if-then” rules to executable code. Lin [29]
leverages recurrent neural networks (RNNs) for NL to code
translation. Chen [5] trained a semantic parser that translate NL
to sketch, then perform synthesis from sketch with examples.
Applying these approaches to program analysis would require
many training examples to cover the vast space of possible
code complexities and situations. They are difficult to apply to
areas where labeled training data is scarce, which is especially
common for program synthesis on multi-sentence queries.

Another body of work is API learning. These work tries
to identify some statistical patterns of API usage. Examples
include code search tools [32], [33], API usage pattern
mining [41], [46], API sequence generation [15]. These studies
rely on statistical machine learning techniques. They hence
require a large set of examples, requiring extra efforts when
applying to other domains.

IX. CONCLUSION

The paper presented the first known solution that enables
near real-time NLU-driven natural language programming. It
introduces a new algorithm dynamic grammar graph-based
translation for identifying the best grammar tree for a given
query and two optimizations, grammar-based pruning and
orphan node relocation, to reduce the search space and address
complexities from queries. It demonstrates the effectiveness
of the proposed solution through a set of experiments on two
domains, showing that the techniques can shorten the synthesis
time of a state-of-the-art NLU-driven algorithm significantly.
It brings up to 1887× (25-133× on average) speedups, while
improving the accuracy by 2-12% for its effects in reducing
the timeout cases.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Grants CNS-1717425, CCF-
1703487, CCF-2028850, and the Department of Energy (DOE)
under Grant DE-SC0013700. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF or DOE.

REFERENCES

[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles
Sutton. A survey of machine learning for big code and naturalness. ACM
Computing Surveys (CSUR), 51(4):1–37, 2018.

[2] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion
Stoica. Autopandas: neural-backed generators for program synthesis.
Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–27,
2019.

[3] Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher,
and Monica S Lam. Genie: A generator of natural language semantic
parsers for virtual assistant commands. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 394–410, 2019.

[4] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano
Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng. Detecting
missing information in bug descriptions. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pages 396–407,
2017.

[5] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. Multi-
modal synthesis of regular expressions. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 487–502, 2020.

[6] Yanju Chen, Ruben Martins, and Yu Feng. Maximal multi-layer
specification synthesis. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 602–612, 2019.

[7] The Clang-Team. Astmatcher reference.
clang.llvm.org/docs/LibASTMatchersReference.html.

[8] The Clang-Team. Clang. clang.llvm.org.
[9] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey

Karkare, Mark Marron, Subhajit Roy, et al. Program synthesis using
natural language. In Proceedings of the 38th International Conference
on Software Engineering, pages 345–356. ACM, 2016.

[10] Android developers. Android api reference.
https://developer.android.com/reference.

[11] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-
rahman Mohamed, and Pushmeet Kohli. Robustfill: Neural program
learning under noisy i/o. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 990–998. JMLR.
org, 2017.

[12] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, and Ravi
Netravali. A system-wide debugging assistant powered by natural
language processing. In Proceedings of the ACM Symposium on Cloud
Computing, pages 171–177, 2019.

[13] Michael D Ernst. Natural language is a programming language: Applying
natural language processing to software development. In 2nd Summit on
Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[14] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W
Reps. Component-based synthesis for complex apis. ACM SIGPLAN
Notices, 52(1):599–612, 2017.

[15] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim.
Deep api learning. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
631–642. ACM, 2016.

[16] Hui Guan, Xipeng Shen, and Hamid Krim. Egeria: a framework for
automatic synthesis of hpc advising tools through multi-layered natural
language processing. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–14, 2017.

[17] Sumit Gulwani. Automating string processing in spreadsheets using
input-output examples. In ACM SIGPLAN Notices, volume 46, pages
317–330. ACM, 2011.

[18] Sumit Gulwani. Synthesis from examples: Interaction models and
algorithms. In Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 2012 14th International Symposium on, pages 8–14. IEEE,
2012.

[19] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan.
Synthesis of loop-free programs. ACM SIGPLAN Notices, 46(6):62–73,
2011.

[20] Sumit Gulwani and Mark Marron. Nlyze: Interactive programming by
natural language for spreadsheet data analysis and manipulation. In
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 803–814. ACM, 2014.

[21] Tihomir Gvero and Viktor Kuncak. Synthesizing java expressions from
free-form queries. In Acm Sigplan Notices, volume 50, pages 416–432.
ACM, 2015.

[22] Sonia Haiduc, Venera Arnaoudova, Andrian Marcus, and Giuliano
Antoniol. The use of text retrieval and natural language processing in
software engineering. In Proceedings of the 38th International Conference
on Software Engineering Companion, pages 898–899, 2016.

288

[23] Gang Hu, Linjie Zhu, and Junfeng Yang. Appflow: using machine learning
to synthesize robust, reusable ui tests. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 269–282,
2018.

[24] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In 2010 ACM/IEEE 32nd
International Conference on Software Engineering, volume 1, pages
215–224. IEEE, 2010.

[25] Gregory Kuhlmann, Peter Stone, Raymond Mooney, and Jude Shavlik.
Guiding a reinforcement learner with natural language advice: Initial
results in robocup soccer. In The AAAI-2004 workshop on supervisory
control of learning and adaptive systems. San Jose, CA, 2004.

[26] Vu Le, Sumit Gulwani, and Zhendong Su. Smartsynth: Synthesizing
smartphone automation scripts from natural language. In Proceeding of
the 11th annual international conference on Mobile systems, applications,
and services, pages 193–206. ACM, 2013.

[27] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and
Willem Visser. S3: syntax-and semantic-guided repair synthesis via
programming by examples. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 593–604, 2017.

[28] Fei Li and HV Jagadish. Constructing an interactive natural language
interface for relational databases. Proceedings of the VLDB Endowment,
8(1):73–84, 2014.

[29] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, Luke
Zettlemoyer, and Michael D Ernst. Program synthesis from natural
language using recurrent neural networks. University of Washington
Department of Computer Science and Engineering, Seattle, WA, USA,
Tech. Rep. UW-CSE-17-03-01, 2017.

[30] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D
Ernst. Nl2bash: A corpus and semantic parser for natural language
interface to the linux operating system. arXiv preprint arXiv:1802.08979,
2018.

[31] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ,
Andrew Senior, Fumin Wang, and Phil Blunsom. Latent predictor
networks for code generation. arXiv preprint arXiv:1603.06744, 2016.

[32] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei
Zhang, and Jianjun Zhao. Codehow: Effective code search based on api
understanding and extended boolean model (e). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on,
pages 260–270. IEEE, 2015.

[33] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie,
and Chen Fu. Portfolio: finding relevant functions and their usage.
In Proceedings of the 33rd International Conference on Software
Engineering, pages 111–120. ACM, 2011.

[34] Zifan Nan, Hui Guan, and Xipeng Shen. Hisyn: human learning-inspired
natural language programming. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 75–86, 2020.

[35] Zifan Nan, Hui Guan, Xipeng Shen, and Chunhua Liao. Deep nlp-based
co-evolvement for synthesizing code analysis from natural language. In
Proceedings of the 30th ACM SIGPLAN International Conference on
Compiler Construction (CC), pages 141–152, 2021.

[36] Pengyu Nie, Junyi Jessy Li, Sarfraz Khurshid, Raymond Mooney, and
Milos Gligoric. Natural language processing and program analysis for

supporting todo comments as software evolves. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[37] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.
[38] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li,

Dengyong Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis.
arXiv preprint arXiv:1611.01855, 2016.

[39] Illia Polosukhin and Alexander Skidanov. Neural program search: Solving
programming tasks from description and examples. arXiv preprint
arXiv:1802.04335, 2018.

[40] Chris Quirk, Raymond Mooney, and Michel Galley. Language to code:
Learning semantic parsers for if-this-then-that recipes. In Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 878–888, 2015.

[41] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. Swim: Synthesizing
what i mean-code search and idiomatic snippet synthesis. In Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on,
pages 357–367. IEEE, 2016.

[42] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Composi-
tional program synthesis from natural language and examples. In IJCAI,
pages 792–800, 2015.

[43] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos
Koutris, and Mayur Naik. Syntax-guided synthesis of datalog programs.
In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 515–527, 2018.

[44] Armando Solar-Lezama and Rastislav Bodik. Program synthesis by
sketching. Citeseer, 2008.

[45] Yu Su, Ahmed Hassan Awadallah, Madian Khabsa, Patrick Pantel,
Michael Gamon, and Mark Encarnacion. Building natural language
interfaces to web apis. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, pages 177–186. ACM,
2017.

[46] Tao Xie and Jian Pei. Mapo: Mining api usages from open source
repositories. In Proceedings of the 2006 international workshop on
Mining software repositories, pages 54–57. ACM, 2006.

[47] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig.
Sqlizer: query synthesis from natural language. Proceedings of the ACM
on Programming Languages, 1(OOPSLA):63, 2017.

[48] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang
Wang. Neural detection of semantic code clones via tree-based
convolution. In 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC), pages 70–80. IEEE, 2019.

[49] Juan Zhai, Xiangzhe Xu, Yu Shi, Minxue Pan, Shiqing Ma, Lei Xu,
Weifeng Zhang, Lin Tan, and Xiangyu Zhang. Cpc: automatically
classifying and propagating natural language comments via program
analysis. 2019.

[50] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating
structured queries from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103, 2017.

[51] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella,
and Harald Gall. Analyzing apis documentation and code to detect
directive defects. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 27–37. IEEE, 2017.

289

