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ABSTRACT

Hard parameter sharing in multi-domain learning (MDL) al-
lows domains to share some of the model parameters to reduce
storage cost while improving prediction accuracy. One com-
mon sharing practice is to share the bottom layers of a deep
neural network among domains while using separate top layers
for each domain. In this work, we revisit this common practice
via an empirical study on image classification tasks from a
diverse set of visual domains and make two surprising obser-
vations. (1) Using separate bottom-layer parameters could
achieve significantly better performance than the common
practice and this phenomenon holds with different experimen-
tal settings. (2) A multi-domain model with a small proportion
of domain-specific parameters from bottom layers can achieve
competitive performance with independent models trained on
each domain separately. Our observations suggest that people
adopt the new strategy of using separate bottom-layer parame-
ters as a stronger baseline for model design in MDL.

Index Terms— Multi-domain Learning, Hard-parameter
Sharing, Empirical Study

1. INTRODUCTION

Recent years have witnessed the rapid development of Deep
Neural Network (DNN) and their superior performance in
many areas of artificial intelligence (AI) and vision tasks. AI-
powered applications thus increasingly adopt DNNs for solv-
ing tasks in single or multiple data steams, leading to more
than one DNN model running simultaneously on resource-
constrained embedded devices. Although the recent progress
on efficient model design and model compression has made
it easier to deploy a single model on device, supporting many
models on device is still challenging due to the linearly in-
creased bandwidth, energy, and storage costs.

An effective approach to address the problem is multi-
domain learning (MDL), where several different domains are
learned jointly. Compared to learning each domain separately,
MDL allows some parameter sharing across domains to take
advantage of the domains’ similarities for improved task per-
formance and reduced storage cost. MDL is closely related
to multi-task learning (MTL), where a set of tasks are learned

jointly. Typically, MTL refers to learning different downstream
tasks (e.g., depth estimation and semantic segmentation) to-
gether while MDL aims to learn on multiple datasets (e.g.,
data collected from multiple sources with differing statistics)
addressing tasks corresponding to each dataset simultaneously.
Despite the subtle differences, both MDL and MTL face an
open question on how to share parameters across domains
or tasks. In this paper, we use the term “domain” and “task”
interchangeably as each domain is associated with one task.
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Fig. 1. The forward propagation of a multi-domain model
given a domain’s input. The model consists of domain-specific
convolution filters, BN layers, and a classifier. When a set of
filters in a convolutional layer is domain-specific, the activation
maps from these filters (called filter-level conv feature) will
replace the corresponding activation maps from the backbone
architecture (called backbone feature). The combined feature
will be feed into the next layer.

Inspired by the effectiveness of the hard parameter sharing
strategy in MTL for improving task performance, researchers
believe the same strategy is also a promising solution for MDL.
Hard parameter sharing is generally applied by sharing the
bottom layers among all tasks, while keeping several top layers
and an output layer task-specific [1]. It is commonly used in
designing multi-task DNN models in the literature [2, 3] and
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gains popularity in MDL [4, 5].
However, it is unclear whether the effectiveness of shar-

ing parameters in bottom layers in MTL can transfer to MDL
or not. As shown in Figure 1, a DNN model usually relies
on a stack of layers to transform inputs to features and then
an output layer to produce predictions based on the features.
Researchers [6, 7] believe that the first several layers (bot-
tom layers) serve as low-level feature extractors such as edge
detectors and corner detectors, which should be able to be
shared across multiple tasks. On the contrary, the top layers
are more sensitive to the input data (i.e., the training task), im-
plying that different tasks should possess distinct top layers to
generate diverse high-level features. This belief is intuitively
reasonable but lacks solid experimental verification for tasks
in diverse domains. Whether the conventional hard parameter
sharing strategy could lead to the satisfying performance in
MDL remains an open question.

In this work, we show that the above sharing strategy is not
suitable in MDL through an empirical study on fine-grained
image classification tasks and a popular multi-domain learning
benchmark Decathlon [8]. Specifically, the common hard
parameter sharing strategy, which shares low-level (bottom-
layer) parameters while keeping high-level (top-layer) ones
domain-specific, is compared to its counterpart, which uses
separate bottom-layer parameters for each domain and shares
top-layer ones. For the description purpose, we refer to the
common hard parameter sharing strategy as top-specific while
the counterpart as bottom-specific. We refer to a model that is
trained on diverse domains as a multi-domain model. Based on
an extensive evaluation on four representative convolutional
neural networks (CNN) architectures, we make two major
observations.

• Multi-domain models constructed using the bottom-
specific strategy could achieve significantly better perfor-
mance than the ones constructed using the top-specific
strategy (i.e., the common practice). Controlled exper-
iments show that this phenomenon can be reproduced
with the different number of domains trained together
on different backbone architectures using different quan-
tities of domain-specific parameters.

• Multi-domain models with few domain-specific param-
eters from bottom layers can achieve the same, if not
better, performance, as independent models trained sep-
arately on each domain in terms of the validation accu-
racy, which introduces the bottom-specific strategy as a
strong baseline for model design in MDL.

These observations advocate for people to rethink the de-
sign of hard parameter sharing strategies in MDL. Particularly,
because top layers of a modern CNN architecture are usually
wider, they tend to have higher redundancy and representa-
tion capability that is not fully exploited when trained on a
single task. Several prior studies [9, 10] empirically demon-
strate that bottom layers are less redundant than top layers in
existing architectures. These studies raise a potential expla-

nation to our observation: the bottom-specific strategy could
achieve better performance than the top-specific strategy be-
cause it makes full use of the capacity in top layers while
alleviating task interference by increasing the representation
power of bottom layers. We further validate the explanation
via a set of controlled experiments based on network prun-
ing. Our experimental evidence and discussions suggest using
the bottom-specific strategy as a stronger baseline for model
design in MDL.

2. RELATED WORK

Multi-Task Learning. Recent works in multi-task learning
(MTL) create multi-task models based on popular DNN archi-
tectures called backbone architectures. They fall into either
hard parameter sharing or soft parameter sharing [1]. Com-
pared with soft parameter sharing where each task still keeps
its own model and parameters, hard parameter sharing allows
multiple tasks to share some of the model parameters and en-
joys the benefits of reduced storage cost and inference latency.
This paper thus focuses on hard parameter sharing.

The most widely-used hard parameter strategy is proposed
by Caruana [11], which shares the bottom layers of a model
across tasks. For instance, Multi-linear Relationship Net-
works [2] share the first five convolutional layers of AlexNet
and use task-specific fully-connected layers for different tasks.
Meta Multi-Task Learning [3] could also be materialized as a
hard parameter sharing structure. Hard parameter sharing may
suffer from task interference because tasks compete for the
same set of parameters in the shared bottom layers. However,
it remains the most popular paradigm due to its effectiveness
in reducing the risk of overfitting and storage cost.

Multi-Domain Learning. Multi-domain learning (MDL)
aims at utilizing a single network to perform target tasks in
a diverse set of domains. This paper focuses on MDL and
studies how to design a compact model that jointly learns
representations for all the domains with a small number of
domain-specific parameters.

There are two types of approaches to developing multi-
domain models. The first type of approaches designs various
adapter modules (e.g., Batch Normalization Adapter [12] and
Residual Adapter [8]) and plugs them in the backbone architec-
ture. The entire backbone architecture keeps domain-agnostic
and is shared across domains while the adapters are domain-
specific. A recent study [13] has shown that the choice of
adapters and the locations they are plugged in depend on the
set of domains. It leverages neural architecture search to figure
out what adapter to use and where to add adapters for a given
set of domains.

The second type of approaches follows the common prac-
tice of hard parameter sharing in MTL. Some researchers [4, 5]
proposed to share bottom layers and design sophisticated top
layers for each domain. However, it remains an open question
whether the effectiveness of sharing parameters in bottom lay-
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ers in MTL can transfer to MDL. In other words, it is unclear
whether the common practice adopted for tasks from a single
domain could lead to similarly satisfied performance for tasks
from different domains. In this work, we aim to answer the
open question and provide insights on designing a better hard
parameter sharing strategy for MDL.

3. METHODOLOGY

Our goal is to study the performance of different hard parame-
ter sharing strategies via controlled experiments, in which the
number of tasks, the backbone architectures, the quantity of
domain-specific parameters are taken into account. We first
describe three design considerations for the studied sharing
strategies in this section and then report experimental settings
and results in the following two sections.

Domain-specific parameters in the filter granularity.
Our experiments focus on image classification tasks, where
each task has its own dataset. CNN models naturally become
the backbone architectures due to their superior performance
on vision tasks. To create multi-domain models, we deter-
mine domain-specific parameters in the granularity of filters in-
stead of layers. Specifically, we will compare the performance
of multi-domain models created using the common practice
(i.e., the top-specific strategy) and its counterparts (i.e., the
bottom-specific strategy) given the same targeted amount of
domain-specific weights. The filter-level granularity allows us
to precisely control the percentage of domain-specific parame-
ters and ensures that each strategy in comparison can have the
same percentage in controlled experiments. Our experiments
show that both the amount of domain-specific parameters and
where these parameters come from (e.g., bottom layers or
top layers) have a significant impact on the performance of a
multi-domain model.

Separate classifier for each domain. It is common that
different domains expect a different size of outputs or even
have diverse prediction goals. In our experiments, the back-
bone architectures use a separate classifier (i.e., the output
layer) for each domain to fit the needs of different output di-
mensions. Although it is still feasible to allow multiple image
classification tasks to share the same classifier, we observe
serious performance degradation due to the aggressive sharing.
Thus, following the practice in prior work [14], we adopt a
separate classifier for each domain.

Separate batch normalization layers for each domain.
We use separate Batch Normalization (BN) layers for each
domain in our multi-domain models. It is motivated by a prior
study [15], which shows that re-learning a set of scales and
biases is sufficient to achieve comparable performance as re-
learning the entire set of parameters when a pre-trained model
is transferred to another task. The scales and biases correspond
to parameters in BN layers in typical CNN architectures. In
our experiments, we adopt the idea of making BN parameters
domain-specific.

Figure 1 illustrates the forward propagation of a multi-
domain model given a specific domain. All domains to be
learned together share the same backbone architecture. Each
domain has its own BN layers, the output layer that produces
logits, and a subset of convolutional filters from the backbone
architecture. The remaining convolutional filters are shared
by all domains. When a set of filters in a convolutional layer
is domain-specific, we use the activation maps produced by
these filters to replace the corresponding activation maps from
the backbone architecture before the activation maps are fed
into the next layer.

4. EXPERIMENTAL SETTINGS

To comprehensively and fairly compare the performance of dif-
ferent hard parameter sharing strategies, we need to consider
several potentially influential factors including the backbone
architectures, the set of domains and domain-specific parame-
ters, parameter initialization, and hyper-parameters. We next
explain each factor in detail.

Backbone architectures. Our experiments use four
popular CNNs, MobileNetV2, ResNet50, MNasNet, and
SqueezeNet. When creating multi-domain models based on
each backbone architecture, we add a separate set of BN layers
and a separate output layer for each domain. We also select a
subset of filters as domain-specific parameters and share the
rest among all domains to be learned jointly.

Datasets. We conduct extensive experiments on five fine-
grained image classification tasks. For simplicity, we call
it the FGC benchmark. We also verify our observations on
Decathlon [8], which contains ten well-known datasets from
diverse visual domains.

Domain-specific parameters. We experiment with dif-
ferent quantities of domain-specific parameters and sharing
strategies. Specifically, we pick different quantities of domain-
specific filters such that the number of weights in these filters
accounts for 0% to 100% of the total number of convolution
parameters in the backbone architecture. We use a step size of
10%. Given the same percentage of domain-specific parame-
ters, we compare three hard parameter sharing strategies:

• top-specific. This strategy shares filters in bottom layers
and makes filters in top layers domain-specific. It is the
common practice used in hard parameter sharing [1, 14].

• bottom-specific. It shares filters in top layers while mak-
ing filters in bottom layers domain-specific. This is a
direct counterpart of the top-specific strategy.

• random. It randomly selects a subset of filters from all
convolutional layers as domain-specific parameters and
shares the rest.

Initialization. Our goal is to eliminate randomness caused
by initialization during controlled experiments to ensure the
fairness of the comparison and the reproducibility of the ex-
perimental results. All multi-domain models are initialized
with their corresponding backbone weights pre-trained on Im-
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ageNet, while the domain-specific classifiers are pre-trained
on each domain separately used to initialize the classifiers in
multi-domain models.

5. RESULTS AND ANALYSIS

5.1. Comparisons between sharing strategies on FGC

Our first surprising discovery is that when constructing multi-
domain models, using separate bottom-layer parameters could
achieve much better performance than using separate top-layer
parameters, which contradicts the common belief in hard pa-
rameter sharing in MDL.

(a) MobileNetV2

(b) ResNet50

Fig. 2. The accuracy curves of multi-domain models created
with the bottom-specific or top-specific strategy on the five
domains in FGC (present by five colors). The percentage of
domain-specific parameters for each domain is 20% of the
total amount of convolution parameters in the backbone model,
(a) MobileNetV2 and (b) ResNet50.

In the experiment, we construct three multi-domain models
from each backbone architecture using the three sharing strate-
gies (top-specific, bottom-specific, and random) and train these
models on FGC. We strictly control the percentage of domain-
specific parameters to be the same for the multi-domain models
created using the three strategies.

Table 1 reports the validation accuracy of the 12 multi-
domain models (4 backbone architectures × 3 sharing strate-
gies) on the five domains. The number of domain-specific
parameters is 20% of the total amount of convolution param-
eters in the backbone model. The rows “random” report the
mean accuracy of two multi-domain models constructed using

the random strategy. The results indicate that the bottom-
specific strategy consistently achieves better performance than
the top-specific one and outperforms the random strategy in
most cases.

Different backbone architectures. We observed the
same phenomenon using different backbone architectures. Fig-
ure 2 shows the accuracy curves of multi-domain models cre-
ated with different strategies. The accuracy curves of the
bottom-specific strategy are always above the ones with the
top-specific strategy on all five domains with different back-
bone architectures, indicating the better performance of the
bottom-specific strategy. The curves of multi-domain models
built on MNasNet and SqueezeNet show a similar pattern.

Different number of domains. The same observation
also holds with the different number of domains. Table 1
shows the performance when all five domains are trained to-
gether and Table 2 presents the results when fewer domains
are used to jointly train multi-domain models built with Mo-
bileNetV2. The results suggest that the bottom-specific strat-
egy consistently yields a better prediction performance than
the top-specific strategy no matter the number of domains to
learn jointly.

Different number of domain-specific parameters. The
superiority of the bottom-specific strategy still holds with
different quantities of domain-specific parameters. Figure
3 shows the validation accuracy of the multi-domain models
whose domain-specific parameters account for 0% to 100% of
the total amount of convolution parameters of their backbone
architecture MobileNetV2. Note that picking 0% domain-
specific parameters results in a multi-domain model with only
separate BN layers and domain-specific classifiers, while pos-
sessing 100% domain-specific parameters is equivalent to
building up a completely independent model for each domain.
The results show that the performance of the bottom-specific
strategy is always higher than the top-specific one, as indi-
cated by the significant gap between the red and green curves.
Besides, randomly selecting domain-specific filters also con-
sistently produces higher validation accuracy than the top-
specific strategy but is worse than the bottom-specific one in
most cases.

5.2. Comparisons between sharing strategies on De-
cathlon

The same phenomenon can be observed when constructing
multi-domain models on Decathlon with the bottom-specific
and the top-specific sharing strategy.

Figure 4 shows the accuracy curves of multi-domain mod-
els built on MobileNetV2 with different sharing strategies
under the same amount of domain-specific parameters (20%
of the total number of convolution parameters in the backbone
model). It can be seen that the bottom-specific strategy can
produce better accuracy performance than the top-specific one
for all or most of the ten domains, which is consistent with the
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Table 1. The validation accuracy of the 12 multi-domain models (4 backbone architectures × 3 sharing strategies) on FGC with
the same amount of domain-specific parameters for each domain (20% of the total number of convolution parameters in the
backbone model). “independent” reports the results of independent models trained on each domain separately.

Architectures # Params (M) Sharing Strategy Aircraft Birds Cars Dogs Indoor Scenes

MobileNetV2

10.67 top-specific 0.8536 0.6714 0.8145 0.6006 0.5985
10.61 random 0.8617 0.6699 0.8259 0.6021 0.6013
10.63 bottom-specific 0.8782 0.6920 0.8506 0.6186 0.6119
17.52 independent 0.8749 0.6920 0.8496 0.6202 0.6074

ResNet50

52.84 top-specific 0.8464 0.6243 0.7887 0.5625 0.5530
52.74 random 0.8650 0.6740 0.8218 0.6211 0.6037
52.97 bottom-specific 0.8657 0.6925 0.8363 0.6128 0.6067
127.78 independent 0.8680 0.6799 0.8419 0.6248 0.6037

MNasNet

12.31 top-specific 0.8422 0.6369 0.7747 0.5880 0.6104
12.34 random 0.8482 0.6634 0.7946 0.6080 0.6082
12.24 bottom-specific 0.8596 0.6740 0.8081 0.6212 0.6164
21.91 independent 0.8668 0.6660 0.8174 0.6177 0.6037

SqueezeNet

3.91 top-specific 0.7555 0.5666 0.6423 0.5034 0.5000
3.90 random 0.7702 0.5817 0.6743 0.5293 0.5119
3.90 bottom-specific 0.7705 0.5733 0.6764 0.5218 0.5131
6.24 independent 0.7819 0.6018 0.7016 0.5427 0.5321

(a) FGVC Aircraft (b) CUB-200-2011 (c) Stanford Cars (d) Stanford Dogs (e) MIT Indoor Scenes

Fig. 3. The validation accuracy trends with an increasing percentage of domain-specific parameters (0% to 100% of the total
convolution parameters in MobileNetV2) for the five domains in FGC. In each line chart, the four lines correspond to applying
different hard parameter sharing strategies.

Table 2. The validation accuracy of multi-domain models
trained on different number of domains. The amount of
domain-specific parameters for each domain accounts for 20%
of the total number of convolution parameters in the backbone
architecture MobileNetV2.

Strategy Aircraft Birds Cars Dogs

top-specific 0.8719 - 0.8390 -
random 0.8762 - 0.8387 -

bottom-specific 0.8767 - 0.8460 -
top-specific 0.8548 0.6655 0.8336 -

random 0.8687 0.6716 0.8357 -
bottom-specific 0.8677 0.6786 0.8474 -

top-specific 0.8629 0.6723 0.8256 0.5948
random 0.8683 0.6902 0.8318 0.6118

bottom-specific 0.8713 0.6917 0.8423 0.6186

observations on FGC.

5.3. Comparison with independent models

Our second discovery is that multi-domain models with a
relatively small proportion of parameters selected from bottom
layers for each domain can achieve competitive performance
with independent models trained on each domain separately.

Aircrafts CIFAR100 DPed Dtd GTSRB Bottom-specific

Top-specificImageNet Omniglot SVHN UCF-101 Flowers

Fig. 4. The accuracy curves of multi-domain models created
with the bottom-specific or top-specific strategy on the ten
domains in Decathlon (present by ten colors). The percentage
of domain-specific parameters for each domain is 20% of the
total amount of convolution parameters in the backbone model
MobileNetV2.

In Figure 3, the performance of independent models corre-
spond to the point where the percentage of domain-specific pa-
rameters is 100%. Overall, multi-domain models constructed
with the bottom-specific strategy can achieve competitive vali-
dation accuracy as independent models when the percentage
of domain-specific parameters is over 20% for all the five do-
mains. This observation is consistent with the well-recognized
benefits of MDL in reducing overfitting and improving predic-
tion accuracy.
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6. DISCUSSIONS

We summarize the two main observations from our experi-
ments as follows.

• Multi-domain models with domain-specific parameters
from bottom layers could achieve better performance
than the ones with the same amount of domain-specific
parameters from top layers.

• Multi-domain models with a relatively small quantity of
domain-specific parameters from bottom layers achieve
the same, if not better, performance as their independent
counterparts.

Why the bottom-specific sharing strategy outperforms
the top-specific one? A potential explanation is that top lay-
ers of a modern CNN architecture are usually much wider than
bottom layers and thus have a higher representation capability.
Prior studies [9, 10] have shown that bottom layers have less
redundancy than top layers in existing architectures. When
tackling multiple domains together, top layers may have suffi-
cient capacity to learn diverse features while the bottom lay-
ers are easily distracted by different domains during training.
The bottom-specific strategy could achieve better performance
than the top-specific strategy because it makes full use of the
capacity in top layers while alleviating task interference by
increasing the representation power of bottom layers.

Why owning a small proportion of domain-specific pa-
rameters from bottom layers is sufficient to surpass inde-
pendent models? The reason comes from two aspects. Firstly,
DNNs are well-known to be over-parameterized [16, 17]. It is
reasonable to assume that a single DNN, especially its top lay-
ers, can largely accommodate the representation requirements
of multiple domains by taking advantage of the redundant
parameters that are not fully exploited on a single domain.
A small portion of domain-specific parameters from bottom
layers increases the representation power of bottom layers,
alleviates domain interference, and thus improves model per-
formance. Secondly, the commonalities among tasks serve as
implicit data augmentation [1] and avoid overfitting. This is
consistent with the common belief about the benefits of MDL.

7. CONCLUSIONS

In this work, we revisit the common practice in hard parame-
ter sharing for multi-domain learning (MDL) and conduct an
empirical study on datasets from different visual domains to
compare the performance of different sharing strategies. Exper-
iments show that the common sharing strategy is outperformed
by its direct counterpart–that is, selecting domain-specific pa-
rameters from bottom layers rather than top layers. The coun-
terpart can also achieve competitive performance compared
with independent models. We further provide explanations for
the observations.
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