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Abstract
In Federated Learning (FL), adaptive optimization
is an effective approach to addressing the statisti-
cal heterogeneity issue but cannot adapt quickly
to concept drifts. In this work, we propose a novel
adaptive optimizer called FLASH that simultane-
ously addresses both statistical heterogeneity and
the concept drift issues. The fundamental insight
is that a concept drift can be detected based on
the magnitude of parameter updates that are re-
quired to fit the global model to each participat-
ing client’s local data distribution. FLASH uses
a two-pronged approach that synergizes client-
side early-stopping training to facilitate detection
of concept drifts and the server-side drift-aware
adaptive optimization to effectively adjust effec-
tive learning rate. We theoretically prove that
FLASH matches the convergence rate of state-of-
the-art adaptive optimizers and further empirically
evaluate the efficacy of FLASH on a variety of FL
benchmarks using different concept drift settings.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017) is a dis-
tributed machine learning paradigm where edge devices
(called “clients”) jointly train a machine learning (ML)
model while keeping the training data on their devices. FL
has cross-device and cross-silo settings (Wu et al., 2022). In
cross-device FL, which is our primary focus, a server picks
a small fraction of clients from the set of available clients
to train an ML model (called “global model”) on their local
data at each round. The server then aggregates the trained
models from the participating clients to update the global
model. As the server does not have access and control over
each client’s data, FL is inherently privacy-preserving and
has been applied in a number of industries such as health
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care (Loftus et al., 2022; du Terrail et al., 2022) and IoT
(Dara et al., 2022; Li et al., 2022) where data privacy is of
paramount importance.

Adaptive optimization is an effective approach to addressing
the statistical heterogeneity issue in FL, where one client’s
data distribution could be different from another client. As
participating clients are different from one round to an-
other, statistical heterogeneity causes differences in data
distributions across rounds, leading to convergence prob-
lems (Karimireddy et al., 2020). Adaptive optimizers such
as FEDYOGI and FEDADAM (Reddi et al., 2021) use adap-
tive learning rates which incorporate knowledge of past
rounds to perform more informed model updates. They suc-
cessfully smooth the updates applied to the global model
and improve the convergence in FL.

Problem. Existing adaptive optimization approaches, how-
ever, cannot adapt quickly to concept drift, another prac-
tical issue faced by deploying FL in real-world applica-
tions yet largely overlooked by the literature. A concept
drift happens when the participating clients change their
class conditional distributions due to phenomena like sea-
sonality effects, geographic biases, diurnal patterns, and
change in users’ habits (Kairouz et al., 2021; Canonaco
et al., 2021). For example, the use of the term “corona”
would generate different outputs pre- and post-pandemic.
Formally, the class conditional distribution before concept
drift, P(y | x) =

∑
c∈C qcPc(y | x), is different from the

distribution after concept drift, P ′(y | x), where qc is weight
of cth client, C is a set of available client for a particular
round in FL, and (x, y) are data samples.

Adapting quickly to a concept drift requires a large adap-
tive learning rate to adjust global model parameters so
that updated parameters can fit new conditional distribu-
tion P ′(y | x). But existing adaptive optimizers often result
in a relatively small effective learning rate towards an op-
timum despite a concept drift. Without loss of generality,
existing adaptive optimizers update model parameters us-
ing w

(r)
g = w

(r−1)
g + ηg

m(r)
√
v(r)+τ

, where w
(r−1)
g are global

model parameters at round r − 1, and m(r) and v(r) are the
estimates of first and second moments of the gradients at
round r. We refer to ηg√

v(r)+τ
as the effective learning rate

of a parameter, which is the learning rate ηg scaled by the



Flash: Concept Drift Adaptation in Federated Learning

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Rounds

0.00

0.01

0.02

0.03

0.04

0.05

Ef
fe

ct
iv

e 
Le

ar
ni

ng
 R

at
e 

g v(r)

FedAvg §,
FedYogi §
FedYogi 
Flash 

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Rounds

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Va
lid

at
io

n 
Ac

cu
ra

cy

FedAvg 
FedYogi §
FedYogi 
Flash 

Figure 1. (Left) Effective learning rate and (Right) Accuracy across
rounds on CIFAR10 dataset, where drift occurs at round 2000. † =
with drift, § = without drift.

inverse of the second moments of the gradients. The second
moments of the gradients would be relatively high when
clients train the global model, which has captured P , on the
new distribution P ′, resulting in an effective learning rate
at the onset of a concept drift which is not large enough to
adapt to the new distribution quickly.

To illustrate the problem, Figure 1 shows the effective learn-
ing rate and the validation accuracy of the state-of-the-art
adaptive optimizer FedYogi (Reddi et al., 2021). We cal-
culate the learning rate by taking average of per-parameter
ηg/

√
v(r) values. Before the drift, the effective learning

rate of FEDYOGI is decreasing as the training approaches
convergence. But after a drift at round 2000, the effective
learning rate increases slowly for FEDYOGI. This slowly
increased effective learning rate delays the drift adaptation,
while also causing a large accuracy dip during the drift.

Proposed Approach. In this paper, we design a novel adap-
tive optimization algorithm called FLASH that can quickly
adapt to concept drift while simultaneously addressing the
statistical heterogeneity issue. The core intuition in FLASH
is to use a larger effective learning rate at the onset of con-
cept drifts while preserving the effectiveness of adaptivity
to address statistical heterogeneity as shown in Figure 1.

Our fundamental insight is that a concept drift can be de-
tected based on how large client parameter updates are
required to fit the received global model to each client’s
local data distribution in a round. Specifically, when the
global model needs larger updates to fit a client’s data in
the current round, it implies that the client’s data is un-
likely to be sampled from the global distribution captured
by the global model. Furthermore, when larger updates are
required by all participating clients in the current round,
it indicates a concept drift and thus the needs of a larger
effective learning rate to update the global model.

To this end, FLASH uses a two-pronged approach that syn-
ergizes client-side training to facilitate concept drift detec-
tion and server-side drift-aware adaptive optimization to
dynamically adjust effective learning rate. On the client
side, FLASH allows clients to train the global model until
it reaches a steady state, where the trained model fits well
to their local data, in each round. This results in a varying

number of epochs per client. In contrast, existing adap-
tive optimizers typically have participating clients train the
global model for a fixed number of epochs.

On the server side, the server orchestrates the update of
the global model and thus can adapt effective learning rate
based on effective gradients, which results from aggregat-
ing local parameter updates from participating clients. The
principle of the adaptivity is to retain the similar effective
learning rate as existing adaptive optimizers when no con-
cept drift happens but significantly increase it at the onset
of the concept drift. We achieve the adaptivity by tracking
||(∆(r))

2 − v(r)|| at each round r–that is, the difference
between the current squared gradients (∆(r))2 and the sec-
ond moment of the gradients v(r) and found that this metric
leads to a boost in the effective learning rate in case of a
drift, while still getting a stabilized performance when no
distribution change.

We evaluate the effectiveness of FLASH both theoretically
and empirically. Theoretically, we prove that FLASH can
match the convergence rate of FEDYOGI, a state-of-the-art
adaptive optimizer, while it can also adapt quicker to a drift
by decreasing the lower bound of the change in second order
effective gradient.

Empirically, we compare FLASH against the best of the
adaptive optimizers, personalization, drift correction, and
drift detection methods using CIFAR10/100, and EMNIST
datasets. In no concept drift settings, FLASH gives a com-
parable performance than the best performing baselines. In
concept drift settings, FLASH has the highest accuracy at
the onset of concept drift, needs the least number of FL
rounds to recover accuracy, and achieves the highest recov-
ered accuracy after concept drifts. The fast concept drift
adaptation from FLASH saves 11.18% (CIFAR10), 10.42%
(CIFAR100) , and 11.79% (EMNIST) of local epochs done
by clients, as the global model adapts to the new distribution.
In concept drift settings, FLASH only underperforms against
ORACLE (an algorithm which has knowledge of when a drift
occurs and access to both pre- and post- drift distributions)
with the lowest accuracy dip difference of 1.48%-2.99%,
while the best performing baselines exhibit 3.15%-9.22%
more accuracy dip compared to the ORACLE.

We summarize the contributions of this work as follows:
• We propose a drift-aware adaptive optimization strat-

egy that can quickly adapt to various concept drift
patterns (sudden, incremental, and recurrent).

• Empirical evaluation demonstrates FLASH can achieve
comparable performance as the most performing base-
lines in no concept drift settings while outperforms all
baselines in various concept drift settings.

• We give theoretical analysis on convergence of FLASH,
an epoch bound for early-stopping SGD for client-side
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training, and draw a relation between the change in
second order effective gradients with concept drifts.

2. Related Work
FLASH is related to techniques that address statistical het-
erogeneity and adaptive optimizations in particular, and
techniques that address concept drift.

Techniques to Address Statistical Heterogeneity. Adap-
tive optimization to address the challenges of statistical het-
erogeneity has been studied in FEDYOGI/FEDADAM (Reddi
et al., 2021). They are slow to adapt to concept drifts be-
cause of their relatively small effective learning rate when
a synchronized concept drift happens. FLASH proposes a
new adaptive update rule where the effective learning rate is
higher at the onset of a drift for faster adaptation.

Personalization also addresses statistical heterogeneity HYP-
CLUSTER (Mansour et al., 2020), MAML (Jiang et al.,
2019), PERFEDAVG (Fallah et al., 2020), APFL (Deng
et al., 2020), DITTO (Li et al., 2021), FEDROD (Chen and
Chao, 2022). It usually creates a separate personalized
model, along with a local model. FLASH uses early-stopping
training to get a well-trained local model for a client. And
the same model, when sent to the server, is used to detect
and adapt to (if any) concept drifts. We do not need to store
any model states on client, as the model states can be ren-
dered useless in case of drifts. Drift correction strategies
address statistical heterogeneity by reducing gradient mis-
match caused by solving two separate objectives (local and
global). SCAFFOLD (Karimireddy et al., 2020) introduces
a gradient correction term named “control variate” to help
reduce the variance across client updates. FEDDYN (Acar
et al., 2021) further reduces the communication cost related
to drift-correction. These methods consider the concept
drift as client-level noise, resulting in a local model update
correction towards the pre-drift distribution. FLASH instead
adapts the global model to the drift, resulting in less efforts
from each client in local training and gradient correction.

Techniques to Address Concept Drift. Concept drifts
in FL fall into two categories, distributed drift, and syn-
chronized drift. Distributed drift, where clients can drift
to multiple distributions in the same round, is explored in
FEDDRIFT (Jothimurugesan et al., 2022). They propose a
multi-model solution where each new distribution drift by
any client spawns a new global model. Maintaining multiple
global models to track all the past and current distributions
poses a scalability challenge. Besides, their experiments do
not consider heterogeneous data setting. FLASH focuses on
synchronized drift, where all the clients face a drift towards
one new distribution. This setting is explored in centralized
learning in (Gama et al., 2014; Tahmasbi et al., 2020). FL
poses an additional challenge of telling apart client-level

heterogeneity from a concept drift. ADAPTIVEFEDAVG
(Canonaco et al., 2021) attempts to addresses the synchro-
nized drift issue through a preliminary study on adaptive
optimizers, but it is incomplete and it falls short in improv-
ing the global accuracy dip during the drift. FLASH has a
rigorous study with various patterns of synchronized drift,
on various baselines based on adaptive optimization, drift
correction, and drift adaptation. We also provide theoretical
analysis for FLASH.

3. Methodology
This section describes our proposed adaptive optimization
algorithm FLASH. Compared to existing adaptive optimiz-
ers, FLASH has two distinct features: (1) Clients train local
model via early-stopping training to facilitate the concept
drift detection and, at the same time, address statistical het-
erogeneity, and (2) the server updates the global model via
drift-aware adaptive optimization. The synergy of the two
features enables FLASH to quickly adapt to concept drift.
Algorithm 1 provides the pseudo-code for FLASH.

3.1. Client-side Early-stopping Training

In one round of FL, each selected client receives the global
model from the server, trains the global model locally
via early-stopping training, and sends the locally-updated
global model (called “local model”) back to the server.
Early-stopping training trains the global model until an early
stop criteria based on model fitness is met. This is in con-
trast to the prevalent way of client-side training (Canonaco
et al., 2021; Deng et al., 2020; Li et al., 2021; Mansour et al.,
2020), i.e, each client trains the the global model for a fixed
number of epochs. Lines 6 to 15 in Algorithm 1 describe
the training procedure of each of the participating clients.

As a stopping criterion, we use decrement in the valida-
tion loss value (see Line 8) to indicate when a local model
w

(r)
c reaches its steady state. If the validation loss stops to

decrease by a threshold γ/e, where γ is a threshold hyper-
parameter and e is the current epoch count, we stop training
for the client. The threshold decreases as epoch count grows
since the validation loss is also expected to decrease. Other-
wise a client can train the local model until a set number of
maximum epochs E.

The rationale behind the early-stopping training are two-
folds. First, training for longer epochs in an FL round is
demonstrate to be an effective approach for addressing sta-
tistical heterogeneity because it creates local models which
can better fit the clients’ data distributions than training for
only a few epochs (Wu et al., 2022). Early-stopping further
avoids potential over-fitting of the local model. Second,
early-stopping training produces parameter updates that are
necessary for the global model to fit a client’s local data
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Algorithm 1: FLASH

Input: R: total number of rounds, r: round index, p:
participation rate, C(r): a set of available clients
for rth round, C: a set of currently participating
clients, c: client index, ηℓ: local learning rate, ηg:
global learning rate, D(r)

c : local dataset of client c
in rth round, e(r)c : number of epochs for client c
for round r, E: maximum number of epochs a
client can train for, Lc: local objective for client c,
β{1,2}: exponential decay rates, τ : adaptivity rate,
γ: loss decrement threshold

Output: w(R)
g : global model

1 server randomly initializes w(0)
g

2 for r ∈ [R] round do
3 sample C from C(r) with the rate of p
4 send w

(r−1)
g to all the clients in C

5 for c ∈ C in parallel do
6 w

(r)
c,0 ← w

(r−1)
g

7 for e ∈ [E] epochs do
8 if ℓ(r)c,e−1 − ℓ

(r)
c,e ≥ γ/e then

9 w
(r)
c,e ←
w

(r)
c,e−1 − ηℓ∇Lc(w

(r)
c,e−1;D

(r)
c,train)

10 ℓ
(r)
c,e ←

∑
(x,y)∈D(r)

c,valid

fc(w
(r)
c,e , x, y)

11 else
12 break
13 end
14 end
15 return w

(r)
c to the server

16 end
17 ∆(r) ← 1

|C|
∑

c∈C(w
(r)
c − w

(r−1)
g )

18 m(r) ← β1m
(r−1) + (1− β1)∆

(r)

19 v(r) ← β2v
(r−1) + (1− β2)(∆

(r))2

20 β3j ←
∥∥∥v(r−1)

j

∥∥∥
2∥∥∥(∆(r)

j )2−v
(r)
j

∥∥∥
2
+
∥∥∥v(r−1)

j

∥∥∥
2

∀j ∈ [n]

21 d
(r)
j ← β3jd

(r−1)
j + (1− β3j)

(
(∆

(r)
j )2 − v

(r)
j

)
∀j ∈ [n]

22 w
(r)
g ← w

(r−1)
g + ηg

m(r)

√
v(r) - d(r) +τ

23 end

distribution. The magnitude of the parameter updates could
indicate if concept drifts. We empirically verify the two ra-
tionales in Section 5.4 and demonstrated that early-stopping
training is able to improve validation accuracy by 1.41%-
3.87% across datasets in no concept drift settings. And in
concept drift settings, early-stopping training is more effec-
tive in detecting concept drifts than fixed-epoch training.

3.2. Server-side Drift-aware Adaptive Optimization

After receiving the local model from each participating
client, the server aggregates the parameter updates into ef-
fective gradients (Line 17) and updates the global model
via drift-aware adaptive optimization (Lines 18-22). Here
the goal is to automatically increase effective learning rate
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(b) CIFAR 100

Figure 2. The gradient disparity ||(∆(r))
2 − v(r)|| v.s. round r.

Sudden concept drift occurs at r = 2000 for FLASH and FEDYOGI.
† = with drift, § = without drift.

when there is a concept drift while preserving the conver-
gence properties of existing adaptive optimizers. Although
the magnitude of effective gradients is a good indicator of
concept drift, the challenge lies in how much the effective
learning rate needs to be adjusted accordingly.

To address the challenge, we propose a metric called gra-
dient disparity that calculates the difference between the
squared gradients (∆(r))2 and the second moment of the
gradients v(r) at round r, i.e., ||(∆(r))

2 − v(r)||. We find
that this metric not only correlates well with the inside of
a concept drift but also lies in a value range that is compa-
rable to

√
v(r)) and thus can be used to adjust the effective

learning rate. Figure 2 shows how the concept drift impacts
gradient disparity. Concept drift at round r = 2000 results
in a larger magnitude of the effective gradient ∆(r) and thus
a larger gradient disparity. This sudden increase in gradient
disparity indicates that the global model needs to adapt to
the new distribution.

Since an absolute value of
(
(∆(r))2 − v(r)

)
doesn’t indi-

cate whether the value is larger or nearly equal to the previ-
ous ones , we track a moving average of

(
(∆(r))2 − v(r)

)
as shown in Line 21 in Algorithm 1, symbolized by d(r).
Instead of a fixed weight parameter β3, we use an adap-
tive β3 for weighing the two terms of d(r). Our aim is to
weigh d(r−1) term more in case there is no “large” change
in

(
(∆(r))2 − v(r)

)
compared to its previous values. In-

versely, we want a larger weighted
(
(∆(r))2 − v(r)

)
if the

value widely differs from the previous ones. We assign β3

as shown in Line 20 in Algorithm 1. We use the equation in
Line 22 to update the global model.

4. Analysis of FLASH

In this section, we theoretically analyze the convergence
of early-stopping training on the client side and the con-
vergence of FLASH. The goal is to show that, despite the
drift-aware design, FLASH retains the convergence property
of existing adaptive optimizers. Specifically, given a client
with a local variance of σc, (defined in Assumption C.3), we
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derive the upper bound of the number of epochs ec needed to
train a global model to meet our stopping criteria. We prove
that FLASH has the same convergence rate as FEDYOGI.
We also derive a relation between FEDYOGI and FLASH in
terms of drift. The proofs are in Appendix C.

Theorem 4.1 (Convergence of Early-stopping SGD).
Assume functions {Fc} satisfy Assumptions C.1, C.2,
C.3, and C.4. The output of the early-stopping SGD
with the early stopping criteria,

∑
x,y fc(w

(r)
c,e−1;x, y) −∑

x,y fc(w
(r)
c,e ;x, y) ≥ γ/e, ∀ e ∈ [E] and ∀ (x, y) ∈

D(r)
c,valid, has an expected error smaller than ϵ for γ ≥
(F−ϵ)

lnE+ 1
E

and ηℓ, ec satisfying

• Strongly convex, 1
µE ≤ ηℓ ≤ log (max (1,µ2ED/c))

µE , and

ec = O
(
min

(
µD2

ϵ + G2

µϵ +
σ2
c

2µϵ , exp(
F−ϵ
γ − 1

E )
))

• General convex, 1
E ≤ ηℓ, and

ec = O
(
min

(
D2 + G2D2

ϵ2 +
σ2
cD

2

2ϵ2 , exp(F−ϵ
γ − 1

E )
))

• Non-convex, 1
E ≤ ηℓ, and

ec = O
(
min

(
F + G2F

ϵ2 +
σ2
cLF 2

2ϵ2 , exp(F−ϵ
γ − 1

E )
))

where c := G2 +
µ2
c

2 , D := E
∥∥∥w(r)

c,0 − w⋆
c

∥∥∥, and F =

fc(w
(r)
c,0)− fc(w

⋆
c ).

Discussion. Here we discuss the relationship between
ec, epochs taken to achieve an optimization error of ϵ =

Er

[
fc(w

(r)

c,e
(r)
c

)
]
− fc(w

⋆
c ), and the concept drift D =∥∥∥w(r)

c,0 − w⋆
c

∥∥∥. In case of FL, w(r)
c,0 := w

(r−1)
g . We fo-

cus on the general convex case, but the same analysis
can be applied for non-convex case as well. Dropping all
the terms related to L, G, and lower powers of ϵ, we get
ec = O

(
D2(1 + 1

ϵ2 +
σ2
c

ϵ2 )
)

. This indicates that number of
epochs a client would run the local training for depends on
the drift between w

(r−1)
g and w⋆

c . If P(r−1) ̸= P(r)
c , then

according to Lemma C.8, D would be larger, implying a
large ec. Besides, ec also depends on the early stopping
parameter γ. A small γ mean large ec, as a lower limit to
the error difference fc(w

(r)
c,e−1)− fc(w

(r)
c,e ) allows for more

epochs of local SGD, and vice versa.

Theorem 4.2 (Convergence of FLASH). Let
assumptions C.1 to C.4 hold. Suppose the
server and client learning rates satisfy ηℓ ≤

min

[(
|C|

30L2E

) 1
2

,

(
τ

6(B2−1)[G(β2+
√
β2)+Lηg]

)]
. Then

the iterates of Algorithm 1 for ηℓ = Θ(1/L
√
E),

ηg = Θ(1/
√
R), and τ = G/L for FLASH satisfy

min
0≤r≤R

E
∥∥∥∇f(w(r)

g )
∥∥∥2 ≤ O(f(w

(0)
g )− Er[f(w

(R)
g )]√

ER

+
G√

ER|C|
(σ2

ℓ + 6Eσ2
g) +

6Lσ2
ℓ

RG2|C| +
6L

R

)

Discussion FLASH obtains convergence at the rate of
O(1/

√
R), which matches FEDYOGI’s convergence rate.

As R → ∞, the error tends to 0. The local and global vari-
ance terms are also weighed by 1/|C|. Meaning that with
more participating clients, the impact of local and global
variance decreases. In Section 5, we empirically show that
FLASH converges faster than FEDYOGI.

Theorem 4.3 (Lower Bounding the Change in the Second
Moment of Effective Gradients). Let {Fc} satisfy Assump-
tions C.1, C.3, and C.5. In round r, the updates in FLASH
and FEDYOGI satisfy,

FEDYOGI
(
Er

[∥∥∥(∆(r))2 − v(r)
∥∥∥])− FLASH

(
Er

[∥∥∥(∆(r))2 − v(r)
∥∥∥])

≥

∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr + τ

)∥∥∥∥∥− η2
ℓE

2G2(1− βr−1
2 )

∣∣∣∣∣
−

∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr − ηℓEG(1− βr

3) + τ
)∥∥∥∥∥

− η2
ℓE

2G2(1− βr−1
2 )

∣∣∣∣∣
Discussion. Lower bounding the change in the second
moment of effective gradients gives us an intuition of what
would be the behavior of an adaptive optimizer during, and
after a concept drift. We see that as β3 → 1 (steady state),
FLASH behaves similar to FEDYOGI and there’s no ma-
jor change in the lower bound, confirming with the results
shown in Figure 2. But at the onset of a drift, β3 → 0
and the lower bound for FLASH decreases due to the term
ηℓEG(1 − βr

3). This is the reason why we see a lower
value of

∥∥(∆(r))2 − v(r)
∥∥ for FLASH during and after a

concept drift. Besides, assuming that w(r−1)
g and w

(r)
g are

capturing pre- and post-drift global distributions P and P ′

respectively, the lower bounds would be high for both.

5. Experiments
We evaluate FLASH on both convex and non-convex tasks
using 6 non-iid federated datasets. We test the efficacy of
FLASH on three concept drift setups: sudden, incremental,
and recurrent, and compare our results against state-of-the-
art adaptive optimization, personalization, drift correction,
and drift adaptation approaches.



Flash: Concept Drift Adaptation in Federated Learning

5.1. Experiment Settings

Datasets, Tasks, and Models. We have a convex task: Clas-
sification of Synthetic data (Li et al., 2020) with a 2 layer
fully connected model (Li et al., 2020) (Synthetic). For
non-convex tasks, we used Stackoverflow Next Word Pre-
diction (Stackoverflow, 2023) with a 1 layer LSTM model
(Reddi et al., 2021) (Stackoverflow), EMNIST (Cohen
et al., 2017) Image Classification with a 2 layer CNN model
(Reddi et al., 2021) (EMNIST), Shakespeare (McMahan
et al., 2017) Next Character Prediction with a 2 layer LSTM
model (Reddi et al., 2021) (Shakespeare). The above three
datasets have natural non-IID partitions based on the au-
thors. Each author is considered a client in the federated
setup, the images/texts generated by that author are samples
for that client. We also use CIFAR10/100 (Krizhevsky et al.,
2009) for image classification tasks based on ResNet18 (He
et al., 2016) (CIFAR10/100). Both datasets are generated
artificially in a federated non-iid fashion based on Dirich-
let distribution as described in (Reddi et al., 2021). More
details in Appendix A.

Baselines. Our baselines fall in four groups: (a) Server- and
client-side optimization (FEDAVG, FEDPROX, FEDYOGI,
FEDNOVA), (b) Personalization (APFL, DITTO, HYPCLUS-
TER), (c) Drift correction (SCAFFOLD, FEDDYN, FEDDC),
and (d) Drift adaptation (FEDDRIFT, ADAPTIVEFEDAVG
shortened to ADAPFA). Note that in case of FEDDRIFT, we
are using FEDDRIFTEAGER since our use case demands
a synchronized concept drift. We also use an ORACLE al-
gorithm which has knowledge about at what round which
client faces a concept drift. ORACLE uses FEDYOGI as its
base algorithm. ORACLE simultaneously trains two global
models, each based on the pre- and post- drift distributions.
With its knowledge about when the drift occurs, ORACLE
simply switches the current global model to reflect the drift.

Metrics. Here we define four metrics used to compare
performance of FLASH and its baselines. Generalized Ac-
curacy for a round r is the average accuracy of the global
model w(r)

g on the test data D(r)
c of clients c ∈ C(r), where

C(r) is a set of available clients for the round r. Person-
alized Accuracy for a round r is the average accuracy of
the local model w(r)

c,ec on the test data D(r)
c of clients c ∈ C,

where C is a set of participating clients for the round r.
Accuracy Dip is the lowest generalized accuracy during a
concept drift starting from round r1 to round r2. It is de-
fined as dip(r1,r2) = min({acc(r)g ∀r ∈ [r1, r2]}). Rounds
till Recovery is the number of rounds taken for the global
model w(r)

g to reach a steady state after a concept drift has
occurred.

Concept Drift Setups. Recall that concept drift occurs
when the conditional distribution P(y | x) changes. Fol-
lowing the practice in (Tahmasbi et al., 2020; Jothimu-

Table 1. Generalized accuracy (the higher, the better) for FLASH

and baselines with no concept drift. EM = EMNIST, SO = Stack-
overflow, SH = Shakespeare, C10 = CIFAR10, C100 = CIFAR100.
Full results in Appendix Tables 3 - 6.
Tasks EM SO SH C10 C100 C10 C100
“Non-iid”ness Writers Authors Authors α = 0.1 α = 0.1 α = 0.6 α = 0.6
FEDAVG 84.12% 28.24% 57.29% 56.91% 36.00% 75.28% 41.52%
FEDPROX 87.52% 27.78% 57.43% 56.74% 35.83% 76.23% 42.63%
FEDYOGI 87.71% 28.96% 57.82% 67.57% 39.92% 78.30% 44.33%
FEDNOVA 88.53% 28.56% 58.23% 66.59% 37.45% 77.89% 43.82%
SCAFFOLD 88.10% 27.68% 57.59% 65.86% 32.48% 75.43% 44.14%
FEDDYN 88.18% 26.08% 57.43% 65.08% 35.20% 77.33% 45.33%
FEDDC 90.64% 27.50% 56.46% 65.16% 39.89% 79.28% 44.89%
APFL 89.78% 24.32% 59.46% 68.90% 36.44% 78.05% 45.78%
DITTO 87.17% 27.97% 59.16% 69.41% 35.41% 78.34% 45.73%
HYPCLUSTER 89.66% 27.96% 58.50% 68.23% 39.24% 78.66% 45.49%
ADAPFA 88.46% 28.76% 58.42% 66.91% 39.48% 78.31% 44.36%
FEDDRIFT 89.12% 27.65% 58.28% 69.18% 38.09% 78.46% 44.49%
FLASH 88.17% 29.13% 58.27% 69.45% 40.65% 79.58% 45.65%

rugesan et al., 2022), we use label swapping to simulate
concept drifts, given the same input features. Since it is
not feasible to swap labels for next word prediction tasks,
we use the classification tasks (EMNIST, CIFAR10, CI-
FAR100, and Synthetic) for concept drift experiments. For
a task with n labels, we swap ith label with i+ 1st label
∀ i ∈ [0, 2, . . . , n]. Specifically, we simulate three types
of concept drifts. (1) Sudden Drift. All the clients face
the distribution change abruptly, at the same round. For
EMNIST, CIFAR10, CIFAR100, and Synthetic datasets, the
concept drift occurs at 600th, 2000th, 2000th, and 500th

rounds respectively. (2) Incremental Drift. Starting on
the same rounds as described in sudden drift, for every 100
rounds, 20% more clients change their distributions to the
new one. (3) Recurrent Drift. First drift occurs abruptly
for EMNIST, CIFAR10, CIFAR100, and Synthetic datasets
at 600th, 2000th, 2000th, and 500th rounds respectively.
Next drift to the old (initial) distribution occurs at 1000th,
2500th, 2500th, and 800th rounds.

We use Flower (Beutel et al., 2020) library to implement
FLASH and all its baselines. The implementation is available
on 1. We use an NVidia 2080ti GPU to run all the experi-
ments with 3 runs for each. The random seeds used are 0,
44, and 56. For all the tasks and datasets, we have uniformly
randomly sampled 10 clients per round. Hyperparameter
details are given in Appendix A.

5.2. Performance Comparison without Concept Drift

This set of experiments aim to demonstrate that FLASH
retains the benefits of adaptivity to address statistical het-
erogeneity issues in FL. We ran FLASH and its baselines
in a no concept drift setup to get the base generalized and
personalized accuracies. For a fair comparison, we used the
same early-stopping criteria for client-side training for all
the baselines.

1Source Code

http://shorturl.at/bmwX1
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Table 1 reports the generalized accuracy. Personalized ac-
curacy shows similar trends and is reported in Appendix
B, tables 5 and 6. Overall, FLASH achieves comparable
generalized accuracy as state-of-the-art techniques in ad-
dressing statistical heterogeneity. Specifically, FLASH out-
performs adaptive optimization approaches FEDYOGI and
drift correction methods SCAFFOLD and FEDDYN (except
with EMNIST) across all tasks. It demonstrates that the new
model updating rules in FLASH, designed for concept drift
adaptation, retains the benefits of adaptive learning rates.
Moreover, FLASH gives comparable performance against
personalization methods APFL, DITTO, and HYPCLUSTER.
The results echo the findings in (Wu et al., 2022) that multi-
ple epochs of local training (or finetuning) works better than
other personalization methods. FEDDRIFT in no drift set-
ting shows no advantage over another clustering algorithm,
HYPCLUSTER. ADAPFA, also being an optimizer for drift
adaptation, shows comparable performance to FEDYOGI.

5.3. Performance Comparison with Concept Drift

This set of experiments aims to demonstrate the better per-
formance of FLASH than baselines in adapting to concept
drifts. Here, we report the results from one type of concept
drift, incremental drift, as described in Section 5.1. Results
for the other two types, sudden and recurrent concept drifts,
are similar and reported in Appendix B.

Figure 3 shows validation generalized accuracy curves with
an incremental drift. Table 2 further reports the accuracy dip
and rounds till recovery to the steady state. We observe that
although ADAPFA competes with FLASH in terms of round
till recovery, it does it with the sacrifice in its during-drift
accuracy degradation of up to 49.14% (C100) compared to
FLASH. While other methods like FEDDRIFT come close
to FLASH in the accuracy dip criteria, they still struggle to
recover quickly due to new model creation and training at
the onset of a drift. ORACLE does not face any performance
degradation due to possessing global models based on both
the pre- and post- drift distribution, FLASH still outperforms
it through a more stable effective learning rate adaptivity.

Given the same number of rounds pre-drift and post-drift,
FEDYOGI is unable to recover to the same steady-state
accuracies in case of EMNIST, CIFAR100, and CIFAR10
(α = 0.1) tasks. For all the datasets, the accuracy dip (see
Table 2) is also larger for FEDYOGI compared to FLASH.
The faster recovery of FLASH when the drift is injected for
20% more clients every 100 rounds indicates that in the first
100 rounds interval, FLASH can still detect the drift and
adapt accordingly.

We also make observations for the cases of adaptation and
starting from scratch in the concept drift setup. The main
difference between FLASH and FEDDRIFT is that while
FLASH lets the same global model adapt (on server side)

Table 2. The lowest accuracy (the higher, the better) during the
concept drift (D) and rounds till recovery (the lower, the better) to
the steady state (R) in an incremental concept drift setting. EM
= EMNIST, C10 = CIFAR10, C100 = CIFAR100.
Tasks EM (D) (R) C10 (D) (R) C100 (D) (R) C10 (D) (R) C100 (D) (R)
Non-iid Writers α = 0.1 α = 0.1 α = 0.6 α = 0.6

FEDAVG 14.64% 510 43.63% 290 18.39% 610 62.75% 420 14.88% 670
FEDPROX 64.94% 460 44.40% 270 17.67% 570 63.10% 400 19.48% 540
FEDYOGI 46.90% 360 45.35% 220 19.46% 510 64.40% 180 16.26% 510
FEDNOVA 58.16% 430 44.13% 240 20.64% 530 62.76% 270 17.49% 550
SCAFFOLD 64.35% 620 47.30% 230 20.89% 500 56.30% 250 15.40% 380
FEDDYN 64.24% 380 52.60% 220 19.83% 430 72.55% 230 18.64% 490
FEDDC 81.73% 300 53.15% 230 20.19% 400 71.64% 240 19.33% 480
APFL 88.50% 320 59.44% 180 25.43% 350 64.75% 190 20.07% 560
DITTO 59.71% 540 56.18% 160 28.49% 430 64.28% 170 18.99% 600
HYPCLUST 85.35% 400 58.65% 140 26.20% 580 64.00% 490 13.41% 620
ADAPFA 59.46% 320 52.25% 70 20.41% 260 70.31% 110 23.17% 270
FEDDRIFT 83.63% 350 63.63% 130 36.10% 240 74.35% 160 38.08% 430
ORACLE 91.65% 0 72.85% 0 40.13% 0 79.29% 0 42.72% 0
FLASH 89.18% 260 70.45% 60 38.65% 210 76.30% 80 40.52% 220

to a new distribution, FEDDRIFT starts a new global model
when a client encounters a new distribution. As described
in Section 5.1, for this specific case of concept drift, the fea-
ture distribution P(x) remains the same after the labels have
been swapped. Hence, the global model based on P1(x, y)
would still offer utility when learning a new distribution
P2(x, y) in terms of having similar feature extraction pa-
rameters before and after the concept drift. Hence we see a
lower accuracy dip and faster adaptation in case of FLASH.

Drift correction methods are rigid to a single global distribu-
tion. They update local models based on the assumption of
a single global distribution, rather than adapt global model
to the distributions learned by the local models. Personal-
ization helps in case of the aforementioned issue of rigidity
since the personalized models of each client do not need
to “correct” themselves according to any global distribution.
Yet the global models generated by each client remain sub-
optimal because of the slower adaptability of the server-side
aggregation methods of these personalization approaches.

Computation Savings after Concept Drifts. We further re-
port the computation savings resulting from FLASH’s faster
adaptation to concept drifts compared to FEDYOGI. After
concept drifts, FLASH requires less number of federated
rounds to recover accuracy, which directly translates to the
less number of epochs on the client side to train the global
model. Figure 4 shows the total number of epochs to train
the global model to reach the same early-stopping criteria
for FLASH and FEDYOGI in each round. The total number
of epochs is the sum of the number of epochs per partici-
pating client in that round. At the onset of both the training
(round 0) and the drift (round 2000), a client has to train
the global model for many epochs (4-6 epochs in average
per client) as the global model has not yet reached a steady
state. As the training approaches the steady state (starting
from around r = 1000), each client uses less number of
epochs (less than 3 epochs in average). We observe that,
after concept drift occurs, FLASH has 11.18-11.79% lower
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(b) CIFAR 100 (α = 0.6)
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Figure 3. Accuracy curves with incremental drift after steady state. The validation accuracies have been averaged across 100 rounds of
interval. Plotted baselines are best of each categories from server-side optimization (FEDYOGI), personalization, and drift correction
(varies depending on the dataset). All drift adaptation baselines along with FLASH and ORACLE are shown. Rest of the baselines depicted
in Figure 8 in Appendix B.
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(b) CIFAR 100

Figure 4. Total number of epochs ran across participating clients
per round r for FLASH vs FEDYOGI. Global model adaptation in
FLASH leads to lower amount of local training done by the clients.

number of epochs per round compared to FedYogi because
FLASH adapts to the new distribution faster, resulting in
clients having to do less work.

Impact of the Ratio of Drifted Clients. We observe the
impact of a ratio pdrift of “clients facing a concept drift” to
total clients in a round for FLASH. As the ratio decreases,
the global impact of only a few clients (pdrift < 0.25)
getting injected with a drift gets absorbed by rest of the
clients who do not face a drift. Results on the drift ratio and
its impact on adaptation are in Appendix B.

5.4. Fixed Epochs versus Early Stopping

This set of experiments aims to verify the importance of
early-stopping training by comparing it with fixed-epoch
training. We empirically verify the two benefits of early-
stopping training (see Section 3.1): (1) It improves the
personalized accuracy of the local model on a client and
(2) It produces a more reliable signal in detecting concept
drifts. Figure 5a reports the personalized accuracy curves
from fixed-epoch training and early-stopping training in a
no concept drift setting. We observe that early-stopping
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Figure 5. Personalized accuracy of FLASH with dynamic number
of epochs (through early-stopping) versus fixed number of epochs
E ∈ {1, 3, 5, 7, 10} on CIFAR10.

training outperforms the best of the fixed-epoch training
(with E = 5) in personalized accuracy. With early stopping,
each client’s epoch count depends on the local gradient
variance of the client and its rate of loss reduction (see
Theorem 4.1), which in turn is based on its heterogeneity.
Hence, a less heterogeneous client could spend less epochs
on local training, avoiding over-fitting. The same trend is
also seen in generalized accuracy curves.

Figure 5b shows the accuracy curves with sudden concept
drifts at round 2000 using CIFAR10 dataset. The lower
accuracy dip from early-stopping training at the onset of the
concept drift demonstrates that early-stopping training is
better than fixed-epoch training in adapting concept drift.

6. Conclusion
In this work, we studied concept drift adaptation in feder-
ated learning. We proposed FLASH that leverages client-
side early-stopping training to facilitate the concept drift
detection and server-side drift-aware adaptive optimization
to address both statistical heterogeneity and concept drift
adaptation. We gave convergence rate for FLASH and its
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client-side early stopping training. We also empirically eval-
uated the effectiveness of FLASH in improving generalized
and personalized accuracy and reducing accuracy dips at
the onset of concept drifts and the federated rounds taken to
recover from concept drifts using a set of tasks and different
drift patterns. For future work, it would be interesting to see
how this approach translates to real-world drifts where the
drifts can occur in an ad-hoc manner and changes in joint
distribution instead of class conditional distribution.
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Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mari-
ana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich,
Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth
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https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/cifar100/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/cifar100/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/cifar100/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/cifar100/load_data
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A. Datasets and Hyperparameters
EMNIST EMNIST dataset (Cohen et al., 2017) has 3400 unique clients where each client has train, validation, and test datasets. The
train datasets of all the clients combined have in total 671,585 instances. The validation and test datasets of all the clients combined have
a total of 77,483 instances each. The heterogeneity of EMNIST clients stems from the individual writing style of each client (where one
client is one person), as discussed in Appendix C.2 of (Reddi et al., 2021).

We have trained each of our baselines and FLASH for R = 1500 rounds, with the batch size of N = 20 instances, 10 clients per round.
All the experiments have ran for E = 10 with the early-stopping criteria discussed in 3.1. The default learning rates for all the experiments
is ηℓ = 0.05 and ηg = 1.00. Although SCAFFOLD and FEDDYN required ηℓ = 0.03. For both FEDPROX and FEDDYN, λ was assigned
0.001. APFL has α = 0.25. And DITTO has λ = 0.1 and client learning rate of ηℓ = 0.01. α in FEDDC has been assigned to 0.5. While
ρ in FEDNOVA has been assigned to 0.8. FLASH has γ = 0.04.

Stackoverflow Stackoverflow dataset (Stackoverflow, 2023) has separate clients for training, validation, and testing. There are 342,477
train clients, having a combined sample count of 135,818,730. Similarly, there are 38,758 validation and 204,088 test clients having a
combined sample count of 16,491,230 and 16,586,035 respectively. Since we need validation set for early-stopping training for each
client, we divide a client’s train dataset in a 7:3 split to get the training and the validation sets. This is a naturally heterogeneous dataset
(FedML, 2022). Each user of Stackoverflow is a client and their posts form a dataset for the client. The dataset is heterogeneous in two
ways: First, users have different writing styles and thus clients’ datasets are not i.i.d. Second, the total number of posts from each user is
also different, leading to different sizes of datasets per client.

We have trained each of our baselines and FLASH for R = 2000 rounds, with the batch size of N = 16 instances, 10 clients per round.
The vocabulary consists is of 10,000 tokens. Similar to EMNIST, all the experiments have ran for E = 10 with the validation loss based
early-stopping criteria. The default learning rates for all the experiments is ηℓ = 0.3 and ηg = 1.00. FEDPROX has λ set to 0.01. While λ
for FEDDYN and DITTO have been set to 0.001 and 0.1 respectively. For APFL, the interpolation factor α is 0.25. The value of ρ for
FEDNOVA is 0.9. FLASH has γ set to 0.05.

Shakespeare Shakespeare dataset (Shakespeare, 2023) has 715 unique clients where each client has train, validation, and test datasets.
The train datasets of all the clients combined have in total 12,854 instances. The validation and test datasets of all the clients combined
have a total of 3,214 and 2,356 instances respectively. Shakespeare dataset is heterogeneous because of each client is one play written by
William Shakespeare, and all the plays have different setting and characters.

Each of our baselines and FLASH are trained for R = 1500 rounds, with the batch size of N = 4, 10 clients per round. The vocabulary
size is 90 as each token is related to a character in the English language. The maximum number of epochs E is set to 10 for all the
algorithms, with early-stopping. Default learning rates for all the experiments are ηℓ = 0.1 and ηg = 1.00. FEDPROX and FEDDYN has
their λ = 0.001. While DITTO has λ = 0.1. APFL and FEDDC have their α = 0.5. FEDNOVA has ρ = 0.85. Early stopping threshold
γ of FLASH is set to 0.05.

CIFAR10 CIFAR10 dataset is created from the centralized version of CIFAR10 dataset (Krizhevsky et al., 2009) having 50,000 images.
Federated CIFAR10 dataset has 500 unique clients, each having 100 samples for training, and 20 samples for testing. A client would
receive the training and testing samples according to the Dirichlet distribution (Reddi et al., 2021). A Dirichlet distribution with the
parameter α ∈ [0, 1] determines the heterogeneity of a client, with a client being more heterogeneous as α → 0. Here, heterogeneity
means how dissimilar the dataset instances sampled from a distribution are. We have experimented on α = 0.1 and α = 0.6.

FLASH and its baselines are trained for R = 4000 rounds, with batch size of N = 20, with 10 clients per round. Maximum number
of epochs is set to E = 15 for the early stopping criteria. Default learning rates for all the experiments are ηℓ = 0.05 and ηg = 0.5.
SCAFFOLD, HYPCLUSTER, FEDDYN and APFL are set for ηℓ = 0.01, 0.01 and 0.09 respectively. FEDPROX, DITTO and FEDDYN
have their λ set to 0.08, 0.01, and 0.05. APFL and FEDDC have their α = 0.25 and 0.01. FEDNOVA has ρ = 0.9. FLASH has γ = 0.04.

CIFAR100 Similar to CIFAR10, CIFAR100 dataset (CIFAR100, 2023) is also created from CIFAR100 dataset (Krizhevsky et al.,
2009) having 50,000 images. The client count and train-test image count are same as that of CIFAR10. Here too, we have experimented
with the Dirichlet parameter α = 0.1 and α = 0.6.

FLASH and its baselines are trained for R = 4000 rounds, with batch size of N = 20, with 10 clients per round. Maximum number
of epochs is set to E = 15 for the early stopping criteria. Default learning rates for all the experiments are ηℓ = 0.01 and ηg = 0.5.
Although SCAFFOLD works best at ηℓ = 0.03. FEDPROX, DITTO and FEDDYN have their λ set to 0.01. APFL and FEDDC have their
α = 0.25 and 0.01. FEDNOVA has ρ = 0.8. FLASH has γ = 0.05.

Synthetic Synthetic dataset is generated with the same procedure described in (Li et al., 2020). The total number of clients is 30. The
dimension of input features is 60, and there are 10 output classes. Each client has sample count randomly generated from the log-normal
distribution with its µ = 4 and σ = 2, and size = number of clients. The parameter which controls how much local models differ from
each other is set to α = 0.5. And the parameter which controls how much the local data at each client differs from that of other clients is
set to β = 0.5.

We have trained all the baselines and FLASH for R = 1000 rounds, with batch size of N = 10, with 10 clients per round. Maximum
number of epochs is set to E = 8 for the early stopping criteria. Default learning rates for all the experiments are ηℓ = 0.01 and
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Table 3. Generalized accuracy (P), standard deviation of individual client’s accuracy (I), and standard deviation of individual experiment
run (E) for FLASH vs baselines, in a no distribution change setting. EM = EMNIST, SO = Stackoverflow, C10 = CIFAR10, C100 =
CIFAR100.

Tasks EM (P) (I) (E) SO (P) (I) (E) C10 (P) (I) (E) C100 (P) (I) (E)
”Non-iid”ness Writers Authors α = 0.1 α = 0.1

LOCAL ONLY - - - - - - - - - - - -
FEDAVG 84.12% 7.92% 1.35% 28.24% 4.44% 0.22% 56.91% 17.69% 1.42% 36.00% 10.21% 0.54%
FEDPROX 87.52% 4.92% 1.10% 27.78% 4.26% 0.09% 56.74% 18.34% 1.23% 35.83% 11.80% 0.30%
FEDYOGI 87.71% 7.14% 1.02% 28.96% 4.36% 0.19% 67.57% 15.08% 1.57% 39.92% 10.39% 0.34%
FEDNOVA 88.53% 7.15% 0.96% 28.56% 4.03% 0.22% 66.59% 8.23% 1.77% 37.45% 10.49% 0.46%
SCAFFOLD 88.10% 7.47% 1.12% 27.68% 4.32% 0.20% 65.86% 13.17% 1.65% 32.48% 10.46% 0.40%
FEDDYN 88.18% 7.84% 0.86% 26.08% 4.52% 0.12% 65.08% 12.90% 1.43% 35.20% 11.19% 0.62%
FEDDC 90.64% 6.81% 0.79% 27.50% 4.76% 0.26% 65.16% 9.30% 1.14% 39.89% 10.44% 0.48%
APFL 89.78% 7.48% 0.90% 24.32% 4.49% 0.31% 68.90% 15.82% 0.95% 36.44% 11.13% 0.44%
DITTO 87.17% 5.01% 0.95% 27.97% 4.10% 0.20% 69.41% 13.73% 1.08% 35.41% 10.77% 0.35%
HYPCLUSTER 89.66% 7.31% 1.25% 27.96% 4.51% 0.24% 68.23% 11.08% 1.76% 39.24% 10.85% 0.55%
ADAPFA 88.46% 6.26% 1.06% 28.76% 4.68% 0.19% 66.91% 10.20% 1.27% 39.48% 10.60% 0.37%
FEDDRIFT 89.12% 6.36% 1.07% 27.65% 4.75% 0.23% 69.18% 11.27% 1.18% 38.09% 11.06% 0.39%
FLASH 88.17% 5.27% 1.20% 29.13% 4.22% 0.12% 69.45% 9.10% 1.24% 40.65% 11.24% 0.42%

ηg = 0.05. Although SCAFFOLD, FEDDYN, FEDDC, DITTO prefer ηℓ = 0.005, ηℓ = 0.005, ηℓ = 0.05, ηℓ = 0.005. FEDPROX, DITTO
and FEDDYN have their λ set to 0.25, 0.01, and 0.01. APFL and FEDDC have their α = 0.5 and 0.1. FEDNOVA has ρ = 0.95. FLASH
has γ = 0.03.

B. Additional Results
B.1. Few clients with sudden drift: FLASH balances local training and global adaptation

We recall that the goal of FLASH is to let all heterogeneous clients have well-trained local models, and if the majority of those local
models exhibit a drift towards a new data distribution, we let the global model adapt to that new distribution. To this end, we find it
interesting to see what ratio of clients have to face a concept drift for the global adaptation to get triggered. We experiment with different
ratios of clients which face a sudden concept drift over all the participating clients of a certain round. As shown in Figure 6, pdrift = 1.00
is the most extreme case where all the clients face the drift. We see the highest accuracy dip there.

We also observe that the accuracy achieved after global drift adaptation is lower than what a global model following the same distribution
throughout the training can achieve.
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Figure 6. Behavior of FLASH with changing pdrift, the ratio of participating clients facing the sudden concept drift over total participating
clients for a round r. The sudden concept drift occurs at 2000th and 600th rounds for CIFAR10 and EMNIST respectively.
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Table 4. Generalized accuracy (P), standard deviation of individual client’s accuracy (I), and standard deviation of individual experiment
run (E) for FLASH vs baselines, in a no distribution change setting. SH = Shakespeare, SY = Synthetic, C10 = CIFAR10, C100 =
CIFAR100.

Tasks SH (P) (I) (E) SY (P) (I) (E) C10 (P) (I) (E) C100 (P) (I) (E)
”Non-iid”ness Authors α = 0.5, β = 0.5 α = 0.6 α = 0.6

LOCAL ONLY - - - - - - - - - - - -
FEDAVG 57.29% 9.72% 0.35% 90.46% 24.07% 0.09% 75.28% 9.54% 0.78% 41.52% 10.52% 0.19%
FEDPROX 57.43% 10.48% 0.41% 92.76% 24.58% 0.09% 76.23% 9.00% 0.69% 42.63% 9.89% 0.36%
FEDYOGI 57.82% 10.59% 0.44% 93.20% 24.65% 0.16% 78.30% 9.02% 0.94% 44.33% 10.42% 0.24%
FEDNOVA 58.23% 9.43% 0.53% 93.57% 22.18% 0.23% 77.89% 8.41% 1.15% 43.82% 8.52% 0.53%
SCAFFOLD 57.59% 10.81% 0.53% 92.92% 28.64% 0.20% 75.43% 8.74% 0.86% 44.14% 9.80% 0.35%
FEDDYN 57.43% 11.57% 0.39% 91.89% 24.68% 0.14% 77.33% 9.35% 0.71% 45.33% 10.08% 0.14%
FEDDC 56.46% 11.55% 0.41% 93.10% 26.07% 0.15% 79.28% 9.83% 1.02% 44.89% 10.44% 0.35%
APFL 59.46% 7.04% 0.51% 91.78% 25.72% 0.08% 78.05% 8.72% 0.75% 45.78% 10.63% 0.29%
DITTO 59.16% 11.23% 0.43% 92.34% 15.79% 0.10% 78.34% 10.79% 0.83% 45.73% 10.58% 0.26%
HYPCLUSTER 58.50% 10.99% 0.60% 92.36% 25.15% 0.19% 78.66% 8.74% 0.74% 45.49% 9.91% 0.19%
ADAPFA 58.42% 11.40% 0.58% 92.88% 27.77% 0.17% 78.31% 9.33% 0.67% 44.36% 10.02% 0.14%
FEDDRIFT 58.28% 9.30% 0.51% 92.38% 28.36% 0.24% 78.46% 9.38% 0.83% 44.49% 9.27% 0.13%
FLASH 58.27% 6.98% 0.56% 93.92% 25.42% 0.11% 79.58% 8.14% 0.85% 45.65% 10.23% 0.26%

Table 5. Personalized accuracy (P), standard deviation of individual client’s accuracy (I), and standard deviation of individual experiment
run (E) for FLASH vs baselines, in a no distribution change setting. EM = EMNIST, SO = Stackoverflow, C10 = CIFAR10, C100 =
CIFAR100.

Tasks EM (P) (I) (E) SO (P) (I) (E) C10 (P) (I) (E) C100 (P) (I) (E)
”Non-iid”ness Writers Authors α = 0.1 α = 0.1

LOCAL ONLY 28.18% 18.56% 1.14% 15.93% 5.31% 0.25% 49.78% 16.65% 1.56% 36.19% 11.91% 0.43%
FEDAVG 83.06% 7.80% 0.95% 28.12 % 4.45% 0.12% 55.81% 17.77% 1.03/% 35.69% 10.41% 0.53%
FEDPROX 86.67% 4.75% 1.02% 28.28% 4.51% 0.16% 55.56% 17.99% 1.25% 35.39% 10.60% 0.47%
FEDYOGI 87.31% 6.68% 1.25% 29.42% 4.85% 0.21% 68.35% 15.44% 1.63% 39.84% 10.42% 0.36%
FEDNOVA 89.26% 4.52% 0.89% 29.06% 4.67% 0.15% 67.56% 14.67% 1.27% 37.26% 9.76% 0.34%
SCAFFOLD 87.51% 7.83% 1.08% 27.82% 4.31% 0.11% 65.84% 13.03% 1.78% 38.44% 10.53% 0.54%
FEDDYN 87.22% 7.92% 1.12% 26.00% 4.61% 0.18% 65.90% 12.85% 0.96% 39.90% 10.55% 0.49%
FEDDC 89.98% 6.91% 1.32% 27.14% 4.75% 0.22% 66.47% 9.58% 1.12% 41.72% 10.38% 0.61%
APFL 90.22% 7.19% 1.27% 27.34% 4.32% 0.13% 69.11% 15.84% 1.43% 40.66% 9.81% 0.41%
DITTO 88.11% 5.01% 0.93% 28.92% 4.55% 0.20% 69.28% 13.09% 1.11% 39.39% 10.56% 0.56%
HYPCLUSTER 89.04% 7.47% 1.18% 28.65% 4.50% 0.19% 70.17% 11.12% 1.52% 39.10% 10.49% 0.59%
ADAPFA 88.86% 6.22% 0.83% 29.01% 4.66% 0.24% 67.29% 10.34% 1.53% 39.25% 9.76% 0.53%
FEDDRIFT 89.68% 7.42% 0.92% 28.34% 4.19% 0.28% 70.45% 12.78% 1.67% 39.22% 10.62% 0.47%
FLASH 89.44 % 7.90% 1.04% 30.24% 4.36% 0.14% 70.07% 8.37% 1.21% 41.23% 11.57% 0.46%

Table 6. Personalized accuracy (P), standard deviation of individual client’s accuracy (I), and standard deviation of individual experiment
run (E) for FLASH vs baselines, in a no distribution change setting. SH = Shakespeare, SY = Synethtic, C10 = CIFAR10, C100 =
CIFAR100.

Tasks SH (P) (I) (E) SY (P) (I) (E) C10 (P) (I) (E) C100 (P) (I) (E)
”Non-iid”ness Authors α = 0.5, β = 0.5 α = 0.6 α = 0.6

LOCAL ONLY - - - - - - - - - - - -
FEDAVG 57.35% 9.72% 0.35% 90.46% 24.07% 0.09% 75.53% 9.54% 0.78% 41.81% 10.52% 0.19%
FEDPROX 57.27% 10.48% 0.41% 92.76% 24.58% 0.09% 76.35% 9.00% 0.69% 42.76% 9.89% 0.36%
FEDYOGI 57.75% 10.59% 0.44% 93.20% 24.65% 0.16% 78.47% 9.02% 0.94% 41.71% 10.42% 0.24%
FEDNOVA 58.86% 9.43% 0.53% 93.57% 22.18% 0.23% 75.93% 8.41% 1.15% 46.12% 8.52% 0.53%
SCAFFOLD 57.65% 10.81% 0.53% 92.92% 28.64% 0.20% 75.84% 8.74% 0.86% 44.40% 9.80% 0.35%
FEDDYN 56.54% 11.57% 0.39% 91.89% 24.68% 0.14% 77.49% 9.35% 0.71% 45.57% 10.08% 0.14%
FEDDC 56.62% 11.55% 0.41% 93.10% 26.07% 0.15% 79.43% 9.83% 1.02% 45.06% 10.44% 0.35%
APFL 59.06% 7.04% 0.51% 91.78% 25.72% 0.08% 80.56% 8.72% 0.75% 46.87% 10.63% 0.29%
DITTO 60.05% 11.23% 0.43% 92.34% 15.79% 0.10% 79.86% 10.79% 0.83% 46.77% 10.58% 0.26%
HYPCLUSTER 59.84% 10.99% 0.60% 92.36% 25.15% 0.19% 79.76% 8.74% 0.74% 46.92% 9.91% 0.19%
ADAPFA 59.07% 11.40% 0.58% 92.88% 27.77% 0.17% 78.56% 9.33% 0.67% 43.86% 10.02% 0.14%
FEDDRIFT 59.18% 9.30% 0.51% 92.38% 28.36% 0.24% 78.82% 9.38% 0.83% 46.04% 9.27% 0.13%
FLASH 59.19% 6.98% 0.56% 93.92% 25.42% 0.11% 79.95% 8.14% 0.85% 45.90% 10.23% 0.26%
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(b) Synthetic
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(c) CIFAR 10 (α = 0.1)
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(d) CIFAR 10 (α = 0.6)
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(e) CIFAR 100 (α = 0.6)

Figure 7. Accuracy curves for EMNIST, Synthetic, and CIFAR 10 / 100 datasets with sudden concept drift after steady state
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(b) Synthetic
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(c) CIFAR 10 (α = 0.1)
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(d) CIFAR 10 (α = 0.6)
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(e) CIFAR 100 (α = 0.6)

Figure 8. Accuracy curves for EMNIST, Synthetic, and CIFAR 10 / 100 datasets with incremental concept drift after steady state
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(b) Synthetic
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(c) CIFAR 10 (α = 0.1)
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(d) CIFAR 10 (α = 0.6)
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(e) CIFAR 100 (α = 0.6)

Figure 9. Accuracy curves for EMNIST, Synthetic, and CIFAR 10 / 100 datasets with recurrent concept drift after steady state
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Table 7. Lowest accuracy during the concept drift (P), rounds till recovery to the steady state (R) for FLASH vs baselines for all the tasks,
in a sudden concept drift setting. EM = EMNIST, C10 = CIFAR10, C100 = CIFAR100, SY = Synthetic.

Tasks EM (P) (R) C10 (P) (R) C100 (P) (R) C10 (P) (R) C100 (P) (R) SY (P) (R)
”Non-iid”ness Writers α = 0.1 α = 0.1 α = 0.6 α = 0.6 α = 0.5, β = 0.5

FEDAVG 5.11% 490 49.05% 240 13.05% 570 57.85% 380 9.25% 610 86.25% 160
FEDPROX 61.50% 390 43.10% 230 12.65% 530 63.60% 310 15.99% 510 84.61% 80
FEDYOGI 43.82% 370 46.42% 190 17.50% 480 65.40% 150 15.60% 550 86.07% 150
FEDNOVA 52.48% 370 50.12% 210 16.48% 500 64.18% 220 16.74% 520 82.09% 120
SCAFFOLD 58.51% 600 56.50% 240 18.73% 460 53.45% 200 14.20% 500 81.69% 80
FEDDYN 63.18% 360 56.22% 210 17.95% 380 69.65% 190 18.25% 430 75.16% 70
FEDDC 80.43% 260 55.38% 210 19.30% 360 64.30% 190 18.75% 410 84.07% 90
APFL 84.33% 270 59.70% 140 21.00% 320 69.95% 190 16.60% 520 85.35% 110
DITTO 75.05% 510 58.86% 150 15.21% 410 62.83% 220 16.96% 470 86.19% 80
HYPCLUSTER 81.32% 350 60.50% 150 14.16% 560 56.00% 450 11.80% 600 83.06% 50
ADAPFA 44.08% 270 54.08% 410 19.00% 230 65.95% 90 18.48% 90 87.04% 60
FEDDRIFT 82.31% 310 65.67% 100 34.22% 300 76.32% 130 31.07% 380 90.30% 90
ORACLE 90.28% 0 72.15% 0 35.75% 0 78.25% 0 44.06% 0 93.55% 0
FLASH 88.00% 210 70.99% 50 35.81% 180 76.90% 60 37.33% 160 91.56% 40
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C. Analysis of FLASH

In Federated Learning, we solve an optimization problem of the form:

min
wg∈Rd

f(wg) =
1

|C|
∑
c∈C

Fc(wg),

where Fc(wg) = E(x,y)∼Dc [fc(wg;x, y)] is the loss function of the cth client, and Dc is the data for the cth client. The functions Fc

and therefore f may be non-convex. For each c and wg , we assume access to an unbiased stochastic gradient∇fc(wg) of the client’s true
gradient∇Fc(wg). In addition, we make the following assumptions.
Assumption C.1 (Lipschitz Gradient). The function Fc is L-smooth for all c ∈ C i.e.,

||∇Fc(w)−∇Fc(z)|| ≤ L||w − z|| ∀w, z ∈ Rd.

Assumption C.2 (µ-convexity). The function Fc is µ-convex for µ ≥ 0 and satisfies:

⟨∇Fc(w), z − w⟩ ≤ −
(
Fc(w)− Fc(z) +

µ

2
∥w − z∥2

)
∀ c, w, z.

Assumption C.3 (Bounded Variance). (Assumption 2 in (Reddi et al., 2021)) The function Fc for any c ∈ C has σℓ-bounded local
variance i.e., E

[
||∇[fc(w;x, y)]j − [∇Fc(w)]j ||2

]
= σ2

c,j ≤ σ2
ℓ,j for all w ∈ Rd, j ∈ [d], and c ∈ C. Furthermore, we assume the

global variance is bounded, 1
|C|
∑

c∈C ||∇[Fc(w)]j − [∇f(w)]j ||2 ≤ σ2
g,j for all w ∈ Rd and j ∈ [d].

Assumption C.4 (Bounded Local Gradients). The function fc(w;x, y) have G-bounded gradients i.e., for any c ∈ C, w ∈ Rd, and
(x, y) ∈ D(r)

c we have |[∇fc(w;x, y)]j | ≤ G for all j ∈ [d].
Assumption C.5 (Bounded Gradient Dissimilarity or (G,B)-BGD). (Assumption 1 in (Karimireddy et al., 2020)) There exists constants
such as G ≥ 0 and B ≥ 1 such that 1

|C|
∑

c∈C∥∇fc(wg)∥2 ≤ G2 + B2∥∇f(wg)∥2, ∀ wg . If {Fc} are convex, we can relax the

assumption to 1
|C|
∑

c∈C∥∇fc(wg)∥2 ≤ G2 + 2LB2(f(wg)− f(w⋆
g)), ∀ wg .

Lemma C.6 (One epoch progress of client-side SGD). Suppose {Fc} satisfies Assumptions C.1, C.2, C.3, and C.4. For a local step-size
ηℓ, the updates of SGD satisfy

Ee

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2 ≤ (1− µηℓ
2

)
Ee−1

∥∥∥w(r)
c,e−1 − w⋆

c

∥∥∥2+2ηℓ
(
fc(w

⋆
c )− Ee−1[fc(w

(r)
c,e−1)]

)
+2Lη3

ℓG
2+2η4

ℓL
2G2+2η2

ℓG
2+η2

ℓσ
2
c

Proof. We start with restating the SGD update

w(r)
c,e ← w

(r)
c,e−1 − ηℓ∇fc(w(r)

c,e−1)

which gives
∆w(r)

c,e = −ηℓ∇fc(w(r)
c,e−1) =⇒ Ee−1

[
∆w(r)

c,e

]
= −ηℓEe−1

[
∇fc(w(r)

c,e−1)
]

Using the above update, we proceed as,

Ee−1

∥∥∥w(r)
c,e +∆w(r)

c,e − w⋆
c

∥∥∥2 = Ee−1

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2 − 2ηℓ⟨∇fc(w(r)
c,e−1), w

(r)
c,e − w⋆

c ⟩+ η2
ℓEe−1

∥∥∥∇fc(w(r)
c,e−1)

∥∥∥2 (1)

≤ Ee−1

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2−2ηℓ⟨∇fc(w(r)
c,e−1), w

(r)
c,e − w⋆

c ⟩︸ ︷︷ ︸
T1

+ η2
ℓEe−1

∥∥∥∇Fc(w
(r)
c,e−1)

∥∥∥2︸ ︷︷ ︸
T2

+η2
ℓσ

2
c (2)

(Separating variance and mean according to Lemma 4 in (Karimireddy et al., 2020))

Bounding T1

T1 = 2ηℓ⟨∇fc(w(r)
c,e−1), w

⋆
c − w(r)

c,e⟩ (3)

≤ 2ηℓ

(
fc(w

⋆
c )− fc(w

(r)
c,e) + L

∥∥∥w(r)
c,e − w

(r)
c,e−1

∥∥∥2 − µ

4

∥∥∥w⋆
c − w(r)

c,e

∥∥∥2) from Lemma 5 of (Karimireddy et al., 2020) (4)

= 2ηℓ

(
fc(w

⋆
c )− fc(w

(r)
c,e)−

µ

4

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2)+ 2Lηℓ

∥∥∥−ηℓ∇fc(w(r)
c,e−1)

∥∥∥2 (5)

= 2ηℓ

(
fc(w

⋆
c )− fc(w

(r)
c,e)−

µ

4

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2)+ 2Lη3
ℓ

∥∥∥∇fc(w(r)
c,e−1)

∥∥∥2 (6)

≤ 2ηℓ

(
fc(w

⋆
c )− fc(w

(r)
c,e)−

µ

4

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2)+ 2Lη3
ℓG

2 (7)
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Bounding T2

T2 = η2
ℓEe−1

∥∥∥∇Fc(w
(r)
c,e−1)−∇Fc(w

(r)
c,e) +∇Fc(w

(r)
c,e)
∥∥∥2 (8)

≤ 2η2
ℓEe−1

∥∥∥∇Fc(w
(r)
c,e−1)−∇Fc(w

(r)
c,e)
∥∥∥2 + 2η2

ℓEe−1

∥∥∥∇Fc(w
(r)
c,e)
∥∥∥2 (9)

≤ 2η2
ℓL

2Ee−1

∥∥∥w(r)
c,e−1 − w(r)

c,e

∥∥∥2 + 2η2
ℓ

∥∥∥∇Fc(w
(r)
c,e)
∥∥∥2 (10)

≤ 2η2
ℓL

2

(
Ee−1

∥∥∥ηℓ∇fc(w(r)
c,e−1)

∥∥∥2)+ 2η2
ℓG

2 (11)

≤ 2η4
ℓL

2G2 + 2η2
ℓG

2 = 2η2
ℓG

2(η2
ℓL

2 + 1) (12)

The inequality (9) comes from the relaxed triangular inequality (Lemma 3 in (Karimireddy et al., 2020)). Inequalities (10) and (12) are
respectively implied by Assumptions C.1 and C.4.

Plugging in the bounds for T1 and T2 in Equation 2,

Ee−1

∥∥∥w(r)
c,e +∆w(r)

c,e − w⋆
c

∥∥∥2 ≤ Ee−1

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2 − 2ηℓ⟨∇fc(w(r)
c,e−1), w

(r)
c,e − w⋆

c ⟩︸ ︷︷ ︸
T1

+ η2
ℓE
∥∥∥∇Fc(w

(r)
c,e−1)

∥∥∥︸ ︷︷ ︸
T2

+η2
ℓσ

2
c (13)

≤ Ee−1

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2 + 2ηℓ

(
fc(w

⋆
c )− fc(w

(r)
c,e)−

µ

4

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2)+ 2Lη3
ℓG

2 + 2η4
ℓL

2G2 + 2η2
ℓG

2 + η2
ℓσ

2
c (14)

=
(
1− µηℓ

2

)
Ee−1

∥∥∥w(r)
c,e − w⋆

c

∥∥∥2 + 2ηℓ
(
fc(w

⋆
c )− fc(w

(r)
c,e)
)
+ 2Lη3

ℓG
2 + 2η4

ℓL
2G2 + 2η2

ℓG
2 + η2

ℓσ
2
c (15)

Theorem C.7 (Convergence of Early-stopping SGD). For functions {Fc} which satisfy Assumptions C.1, C.2, C.3, and C.4, the
output of the early-stopping SGD with early stopping criteria

∑
x,y fc(w

(r)
c,e−1;x, y) −

∑
x,y fc(w

(r)
c,e ;x, y) ≥ γ/e, ∀ e ∈ [E] and

∀ (x, y) ∈ D(r)
c,valid has expected error smaller than ϵ for γ ≥ (F−ϵ)

lnE+ 1
E

and some values of ηℓ, ec satisfying

• Strongly convex, 1
µE
≤ ηℓ ≤ log (max (1,µ2ED/c))

µE
, and ec = O

(
min

(
µD2

ϵ
+ G2

µϵ
+

σ2
c

2µϵ
+ LG2

µ2ϵ
+ L2G2

µ3ϵ

)
, exp(F−ϵ

γ
− 1

E
)
)

• General convex, 1
E
≤ ηℓ, and ec = O

(
min

(
D2 + G2D2

ϵ2
+

σ2
cD

2

2ϵ2
+

√
LGD2

ϵ3/2
+ (L2G2)1/3D2

ϵ4/3

)
, exp(F−ϵ

γ
− 1

E
)
)

• Non-convex, 1
E
≤ ηℓ, and ec = O

(
min

(
F + G2F

ϵ2
+

σ2
cLF2

2ϵ2
+

√
LGF

ϵ3/2
+ (L2G)1/3F

ϵ4/3

)
, exp(F−ϵ

γ
− 1

E
)
)

where c := G2 +
µ2
c
2

, D := E
∥∥∥w(r)

c,0 − w⋆
c

∥∥∥, and F = fc(w
(r)
c,0)− fc(w

⋆
c ).

Proof. Using the Lemma C.6 statement, and moving fc(w
⋆
c )− fc(w

(r)
c,e) to LHS and rearranging the terms on RHS,

E
[
fc(w

(r)
c,e−1)

]
− fc(w

⋆
c ) ≤

1

2ηℓ

(
1− µηℓ

2

)
E
∥∥∥w(r)

c,e−1 − w⋆
c

∥∥∥2 − 1

2ηℓ
E
∥∥∥w(r)

c,e − w⋆
c

∥∥∥2
+

η2
ℓ

2ηℓ
(2LηℓG

2 + 2η2
ℓL

2G2 + 2G2 + σ2
c ) (16)

=
1

2ηℓ

(
1− µηℓ

2

)
E
∥∥∥w(r)

c,e−1 − w⋆
c

∥∥∥2 − 1

2ηℓ
E
∥∥∥w(r)

c,e − w⋆
c

∥∥∥2
+ ηℓ(G

2 +
σ2
c

2
) + η2

ℓ (LG
2) + η3

ℓ (L
2G2) (17)

Note that the indices are off by 1 with respect to Lemma C.6 to be consistent with the theorem statement.

In case of µ = 0 (general convex case), we apply the sublinear convergence rate on a non-negative sequence (refer to Lemma 2 in
(Karimireddy et al., 2020)) and the condition 1

E
≤ ηℓ,

E
[
fc(w

(r)
c,e)
]
− fc(w

⋆
c ) ≤

D2

2ηℓE
+

(
G2 +

σ2
c

2

)
ηℓ + (LG2)η2

ℓ + (LG)η3
ℓ (18)

≤ D2

2
+

(
G2 +

σ2
c

2

) 1
2
(
D2

E

) 1
2

+ (LG2)
1
3

(
D2

E

) 2
3

+ (LG)
1
2

(
D2

E

) 3
4

(19)
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For the µ-convex case, similar to the usage of Lemma 1 in (Karimireddy et al., 2020), we apply the linear convergence rate with the
condition ηℓ ≥ 1

µE
and get,

E
[
fc(w

(r)
c,e)
]
− fc(w

⋆
c ) ≤

3

2
D2µ exp

(
−ηℓµE

2

)
+

(
G2 +

σ2
c

2

)
ηℓ + (LG2)η2

ℓ + (L2G2)η3
ℓ (20)

≤ 3D2µ

2
+

(
G2 +

σ2
c

2

)
1

µE
+ (LG2)

1

µ2E2
+ (L2G2)

1

µ3E3
(21)

Rearranging the terms and assigning the error as E
[
fc(w

(r)
c,e)
]
− fc(w

⋆
c ) = ϵ get us the bounds shown in the theorem statement.

For the bound on early stopping parameter γ, we get the lower bound of E
[
fc(w

(r)
c,e)
]
− fc(w

⋆
c ) as follows,

E
[
fc(w

(r)
c,e)
]
− fc(w

⋆
c ) = E

[
fc(w

(r)
c,e)
]
− E

[
fc(w

(r)
c,e−1)

]
+ E

[
fc(w

(r)
c,e−1)

]
− E

[
fc(w

(E−2)
c )

]
+ E

[
fc(w

(E−2)
c )

]
· · · − E

[
fc(w

(0)
c )
]
+ E

[
fc(w

(0)
c )
]
− fc(w

⋆
c ) (22)

∴ ϵ ≥ −γ
E∑

i=1

1

i
+ E

[
fc(w

(0)
c )
]
− fc(w

⋆
c ) (23)

≥ −γ
(
lnE +

1

E

)
+ E

[
fc(w

(0)
c )
]
− fc(w

⋆
c ) (24)

∴ γ ≥ (Efc(w(0)
c )− Efc(w(r)

c,e))

lnE + 1
E

=
(F − ϵ)

lnE + 1
E

(25)

where F = E
[
fc(w

(0)
c )
]
− fc(w

⋆
c ) and ϵ = E

[
fc(w

(r)
c,e)
]
− fc(w

⋆
c ).

Lemma C.8 (Bounding the Client Drift wrt Current Round). Let {Fc} satisfy Assumptions C.1, C.3, and C.5. For any step size satisfying

ηℓ ≤
√

1
L2E(E−1)

, we can bound the drift for E = max({Ec | c ∈ C}) where Ec is the number of epochs client c trains w(r)
c,0 := w

(r−1)
g

for, as
1

|C|
∑
c∈C

E
∥∥∥w(r)

c,e − w(r)
g

∥∥∥2 ≤ 5Eη2
ℓE[σ2

ℓ + 6Eσ2
g ] + 30E2η2

ℓE
∥∥∥∇f(w(r)

g )
∥∥∥2

Proof. We have followed the same proof technique as in Lemma 3 of (Reddi et al., 2021).

Lemma C.9 (Upper Bounding the Effective Gradients). Let {Fc} satisfy Assumptions C.1, C.3, and C.5. In round r, the updates in
FLASH and FEDYOGI satisfy,

Er

∥∥∥(∆(r))2
∥∥∥ ≤ 6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

)
+

(
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2

(26)

Proof.

Er

∥∥∥(∆(r))2
∥∥∥ ≤ Er

∥∥∥∆(r) + ηℓE∇f(w(r)
g )− ηℓE∇f(w(r)

g )
∥∥∥2 (27)

≤ 2Er

∥∥∥∆(r) + ηℓE∇f(w(r)
g )
∥∥∥2 + 2Er

∥∥∥ηℓE∇f(w(r)
g )
∥∥∥2 (28)

= 2Er

∥∥∥∥∥− 1

|C|
∑
c∈C

E−1∑
e=0

ηℓ∇fc(w(r)
c,e) + ηℓE∇f(w(r)

g )

∥∥∥∥∥
2

+ 2Er

∥∥∥ηℓE∇f(w(r)
g )
∥∥∥2 (29)

= 2Er

∥∥∥∥∥− 1

|C|
∑
c∈C

E−1∑
e=0

(ηℓ∇fc(w(r)
c,e)− ηℓ∇Fc(w

(r)
c,e) + ηℓ∇Fc(w

(r)
c,e)− ηℓ∇Fc(w

(r)
g ) + ηℓ∇Fc(w

(r)
g )) + ηℓE∇f(w(r)

g )

∥∥∥∥∥
2

+ 2Er

∥∥∥ηℓE∇f(w(r)
g )
∥∥∥2 (30)
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= 2η2
ℓEr

∥∥∥∥∥− 1

|C|
∑
c∈C

E−1∑
e=0

(∇fc(w(r)
c,e)−∇Fc(w

(r)
c,e) +∇Fc(w

(r)
c,e)−∇Fc(w

(r)
g ))− 1

|C|
∑
c∈C

Ec∑
e=0

∇Fc(w
(r)
g ) + E∇f(w(r)

g )

∥∥∥∥∥
2

+ 2E2η2
ℓEr

∥∥∥∇f(w(r)
g )
∥∥∥2 (31)

≤ 6η2
ℓEr

∥∥∥∥∥ 1

|C|
∑
c∈C

Ec∑
e=0

(∇fc(w(r)
c,e)−∇Fc(w

(r)
c,e))

∥∥∥∥∥
2

+ 6η2
ℓEr

∥∥∥∥∥ 1

|C|
∑
c∈C

Ec∑
e=0

(∇Fc(w
(r)
c,e)−∇Fc(w

(r)
g ))

∥∥∥∥∥
2

+ 6η2E

(
G2 + (B2 − 1)Er

∥∥∥∇f(w(r)
g )
∥∥∥2)+ 2E2η2

ℓEr

∥∥∥∇f(w(r)
g )
∥∥∥2 (32)

≤ 6η2
ℓEσ2

ℓ

|C| +
6η2

ℓ

|C|2
Er

∥∥∥∥∥∑
c∈C

Ec∑
e=0

L(w(r)
c,e − w(r)

g )

∥∥∥∥∥
2

+ (2E2η2
ℓ + 6η2

ℓE(B2 − 1))Er

∥∥∥∇f(w(r)
g )
∥∥∥2 + 6η2

ℓEG2 (33)

≤ 6η2
ℓEσ2

ℓ

|C| +
6η2

ℓL
2E2

|C|

(
5Eη2

ℓ (σ
2
ℓ + 6Eσ2

g) + 30E2η2
ℓEr

∥∥∥∇f(w(r)
g )
∥∥∥2)

+ (2E2η2
ℓ + 6η2

ℓE(B2 − 1))Er

∥∥∥∇f(w(r)
g )
∥∥∥2 + 6η2

ℓEG2 (34)

≤ 6η2
ℓEσ2

ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

)
+

(
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2 (35)

The second to last inequality follows from Lemma C.8.

Lemma C.10 (Upper Bounding the Rolling Average of Effective Gradients). Let {Fc} satisfy Assumptions C.1, C.3, and C.5. In round r,
the updates in FLASH and FEDYOGI satisfy,

Er

[∥∥∥v(r)∥∥∥] ≤ η2
ℓE

2G2(1− βr−1
2 ) + (2− β2)

(
6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

))
+ (2− β2)

((
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2) (36)

Proof. First we recall that v(r) = β2v
(r−1) + (1 − β2)(∆

(r))2, similar to FEDADAM/FEDYOGI updates in (Reddi et al., 2021).
Unrolling the recursion, we get v(r) = (1− β2)

∑r
i=1 β

r−i
2 (∆(i))2.

Replacing v(r) with its unrolled version,

Er

[∥∥∥v(r)∥∥∥] = (1− β2)Er

[∥∥∥∥∥
r∑

i=1

βr−i
2 (∆(i))2

∥∥∥∥∥
]

(37)

≤ (1− β2)

[
Er

∥∥∥∥∥
r−1∑
i=1

βr−1−i
2 (∆(i))2

∥∥∥∥∥+ Er

∥∥∥β0
2(∆

(r))2
∥∥∥] (38)

= (1− β2)

[∥∥∥∥∥
r−1∑
i=1

βr−1−i
2 (∆(i))2

∥∥∥∥∥+ Er

∥∥∥(∆(r))2
∥∥∥] (39)

≤ (1− β2)

r−1∑
i=1

βr−1−i
2

∥∥∥(∆(i))2
∥∥∥+ (1− β2)Er

∥∥∥(∆(r))2
∥∥∥︸ ︷︷ ︸

T1

(40)

Plugging in the bounds for T1, from Lemma C.9,
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Er

[∥∥∥v(r)∥∥∥] ≤ (1− β2)

r−1∑
i=1

βr−1−i
2

∥∥∥(∆(i))2
∥∥∥+ (2− β2)Er

∥∥∥(∆(r))2
∥∥∥ (41)

≤ (1− β2)

r−1∑
i=1

βr−1−i
2

∥∥∥(∆(i))2
∥∥∥

+ (2− β2)

(
6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

)
+

(
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2)

(42)

≤ (1− β2)

r−1∑
i=1

βr−1−i
2

∥∥∥∥∥∥
(
− 1

|C|
∑
c∈C

E∑
e=0

ηℓ∇fc(w(i)
c,e)

)2
∥∥∥∥∥∥

+ (2− β2)

(
6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

)
+

(
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2)

(43)

≤ (1− β2)η
2
ℓ

|C|2
r−1∑
i=1

βr−1−i
2

∥∥∥∥∥∥
(∑

c∈C

E∑
e=0

∇fc(w(i)
c,e)

)2
∥∥∥∥∥∥

+ (2− β2)

(
6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

)
+

(
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2)

(44)

≤ (1− β2)η
2
ℓ

|C|2
r−1∑
i=1

βr−1−i
2

∥∥(|C|EG)2
∥∥

+ (2− β2)

(
6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

)
+

(
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2)

(45)

≤ (1− β2)η
2
ℓ |C|2E2G2

|C|2
· (1− βr−1

2 )

(1− β2)

+ (2− β2)

(
6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

)
+

(
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2)

(46)

≤ η2
ℓE

2G2(1− βr−1
2 )

+ (2− β2)

(
6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2 +

30η4
ℓL

2E3

|C|
(
σ2
ℓ + 6Eσ2

g

)
+

(
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1)

)
Er

∥∥∥∇f(w(r)
g )
∥∥∥2)

(47)

Theorem C.11 (Lower Bounding the Change in the Second Moment of Effective Gradients). Let {Fc} satisfy Assumptions C.1, C.3, and
C.5. In round r, the updates in FLASH and FEDYOGI satisfy,

FEDYOGI
(
E
[∥∥∥(∆(r))2 − v(r)

∥∥∥])− FLASH
(
E
[∥∥∥(∆(r))2 − v(r)

∥∥∥])
≥

∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr + τ

)∥∥∥∥∥− η2
ℓE

2G2(1− βr−1
2 )

∣∣∣∣∣
−

∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr − ηℓEG(1− βr

3) + τ
)∥∥∥∥∥− η2

ℓE
2G2(1− βr−1

2 )

∣∣∣∣∣ (48)

Proof. Using Jensen’s Inequality, we have
E [||a− b||] ≥ |E||a|| − E||b|||

Hence we get,
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Er

[∥∥∥(∆(r))2 − v(r)
∥∥∥] ≥ ∣∣∣Er||(∆(r))2|| − Er||v(r)||

∣∣∣ (49)

≥

∣∣∣∣∣Er||(∆(r))2|| −

(
(1− β2)

r−1∑
i=1

βr−1−i
2

∥∥∥(∆(i))2
∥∥∥+ (1− β2)Er

∥∥∥(∆(r))2
∥∥∥)∣∣∣∣∣ (50)

≥

∣∣∣∣∣(1− 1 + β2)Er||(∆(r))2|| −

(
(1− β2)

r−1∑
i=1

βr−1−i
2

∥∥∥(∆(i))2
∥∥∥)∣∣∣∣∣ (51)

≥

∣∣∣∣∣(1− 1 + β2)Er||(∆(r))2|| −

(
(1− β2)

r−1∑
i=1

βr−1−i
2

∥∥∥(∆(i))2
∥∥∥)∣∣∣∣∣ (52)

≥
∣∣∣β2Er||(∆(r))2|| − η2

ℓE
2G2(1− βr−1

2 )
∣∣∣ (53)

The second and the last inequalities both are based on the derivation shown in Lemma C.10.

For FEDYOGI, we know that w(r)
g = w

(r−1)
g + ηg

∆(r)√
v(r)+τ

, hence we get lower bound of Er

[∥∥∥(∆(r))2 − v(r)
∥∥∥] as,

FEDYOGI
(
E
[∥∥∥(∆(r))2 − v(r)

∥∥∥]) ≥ ∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr + τ

)∥∥∥∥∥− η2
ℓE

2G2(1− βr−1
2 )

∣∣∣∣∣ (54)

and For FLASH, we know that w(r)
g = w

(r−1)
g + ηg

∆(r)√
v(r)−d(r)+τ

, hence we get lower bound of Er

[∥∥∥(∆(r))2 − v(r)
∥∥∥] as,

FLASH
(
E
[∥∥∥(∆(r))2 − v(r)

∥∥∥]) ≥ ∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr − d(r) + τ

)∥∥∥∥∥− η2
ℓE

2G2(1− βr−1
2 )

∣∣∣∣∣ (55)

≥

∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr − ηℓEG(1− βr

3) + τ
)∥∥∥∥∥− η2

ℓE
2G2(1− βr−1

2 )

∣∣∣∣∣ (56)

Second inequality follows from the fact that −d(r) ≥ −ηℓEG(1− βr
3). Note that ηℓEG(1− βr

3) would always be positive.

Therefore, we get

FEDYOGI
(
E
[∥∥∥(∆(r))2 − v(r)

∥∥∥])− FLASH
(
E
[∥∥∥(∆(r))2 − v(r)

∥∥∥])
≥

∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr + τ

)∥∥∥∥∥− η2
ℓE

2G2(1− βr−1
2 )

∣∣∣∣∣
−

∣∣∣∣∣ β2√
ηg

Er

∥∥∥∥∥
√(

w
(r)
g − w

(r−1)
g

)(√
vr − ηℓEG(1− βr

3) + τ
)∥∥∥∥∥− η2

ℓE
2G2(1− βr−1

2 )

∣∣∣∣∣ (57)

Theorem C.12 (Convergence of FLASH). Let assumptions C.1 to C.4 hold. Suppose the server and client learning rates satisfy

ηℓ ≤ min

[(
|C|

30L2E

) 1
2

,

(
τ

6(B2 − 1)
[
G(β2 +

√
β2) + Lηg

])] .
Then the iterates of Algorithm 1 for ηℓ = Θ(1/L

√
E), ηg = Θ(1/

√
R), and τ = G/L for FLASH satisfy

min
0≤r≤R

E
∥∥∥∇f(w(r)

g )
∥∥∥2 ≤ O(f(w

(0)
g )− Er[f(w

(R)
g )]√

ER
+

G√
ER|C|

(σ2
ℓ + 6Eσ2

g) +
6Lσ2

ℓ

RG2|C| +
6L

R

)
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Proof. The proof strategy is similar to that of FEDADAM as described in (Reddi et al., 2021), except now we also have to manage the
addition of moving average of the difference between (∆(r))2 and v(r).

We note that FLASH has the following update rule (see Algorithm 1 Line 22)

w(r+1)
g ← w(r)

g + ηg
∆(r)

√
v(r) − d(r) + τ

.

Similar to the analysis of FEDADAM, we are assuming β1 = 0. Hence, m(r) = ∆(r).

Note that d(r)j ← β3jd
(r−1)
j + (1− β3j)((∆

(r)
j )2 − v

(r)
j ) where β3j =

||v(r−1)
j ||2

||(∆(r)
j )2−v

(r)
j ||2+||v(r−1)

j ||2
for all j ∈ [d].

Using the L-smooth nature of the function f and the above update rule, we have the following,

f(w(r+1)
g ) ≤ f(w(r)

g ) +
〈
∇f(w(r)

g ), w(r+1)
g − w(r)

g

〉
+

L

2

∥∥∥w(r+1)
g − w(r)

g

∥∥∥2 (58)

= f(w(r)
g ) + ηg

d∑
j=1

[∇f(w(r)
g )]j ×

∆
(r)
j√

v
(r)
j − d

(r)
j + τ

+
Lη2

g

2

d∑
j=1

(∆
(r)
j )2(√

v
(r)
j − d

(r)
j + τ

)2 (59)

The second step follows from the update rule of FLASH stated initially.

Now we take expectation of f(wr+1
g ) (over randomness at round r) and rewrite the above inequality as,

Er[f(w
(r+1)
g )] ≤ f(w(r)

g ) + ηg

〈
∇f(w(r)

g ),Er

[
∆(r)

√
v(r) − d(r) + τ

− ∆(r)√
β2v(r−1) − β3d(r−1) + τ

+
∆(r)√

β2v(r−1) − β3d(r−1) + τ

]〉

+
Lη2

g

2
Er

 (∆(r))2(√
v(r) − d(r) + τ

)2
 (60)

= f(w(r)
g ) + ηg

〈
∇f(w(r)

g ),Er

[
∆(r)√

β2v(r−1) − β3d(r−1) + τ

]〉
︸ ︷︷ ︸

T1

+ ηg

〈
∇f(w(r)

g ),Er

[
∆(r)

√
v(r) − d(r) + τ

− ∆(r)√
β2v(r−1) − β3d(r−1) + τ

]〉
︸ ︷︷ ︸

T2

+
Lη2

g

2
Er

 (∆(r))2(√
v(r) − d(r) + τ

)2


(61)

Bounding T1

T1 =

〈
∇f(w(r)

g ),Er

[
∆(r)√

β2v(r−1) − β3d(r−1) + τ

]〉
(62)

=

〈
∇f(w(r)

g )√
β2v(r−1) − β3d(r−1) + τ

,Er

[
∆(r) − ηℓE∇f(w(r)

g ) + ηℓE∇f(w(r)
g )
]〉

(63)

=
−ηℓE[∇f(w(r)

g )]2√
β2v(r−1) − β3d(r−1) + τ

+

〈
∇f(w(r)

g )√
β2v(r−1) − β3d(r−1) + τ

,Er

[
∆(r) + ηℓE∇f(w(r)

g )
]〉

︸ ︷︷ ︸
T3

(64)
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Bounding T3

T3 =

〈
∇f(w(r)

g )√
β2v(r−1) − β3d(r−1) + τ

,Er

[
− 1

|C|
∑
c∈C

E∑
e=0

ηℓ∇fc(w(r)
c,e) + ηℓE∇f(w(r)

g )

]〉
(65)

≤ ηℓE

2

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ

+
ηℓ
2
Er

∥∥∥∥∥∥ 1

|C|
∑
c∈C

E∑
e=0

∇Fc(w
(r)
c,e)√√

β2v(r−1) − β3d(r−1) + τ

− 1

|C|
∑
c∈C

E∑
e=0

∇Fc(w
(r)
g )√√

β2v(r−1) − β3d(r−1) + τ

∥∥∥∥∥∥
2 (66)

≤ ηℓE

2

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ
+

ηℓ
2|C|Er

∑
c∈C

E∑
e=0

∥∥∥∥∥∥ ∇Fc(w
(r)
c,e)−∇Fc(w

(r)
g )√√

β2v(r−1) − β3d(r−1) + τ

∥∥∥∥∥∥
2 (67)

≤ ηℓE

2

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ
+

ηℓL
2

2|C|τ Er

[∑
c∈C

E∑
e=0

∥∥∥w(r)
c,e − w(r)

g

∥∥∥2] (68)

≤ ηℓE

2

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ
+

ηℓL
2E

2τ

(
5Eη2

ℓ

(
σ2
ℓ + 6Eσ2

g

)
+ 30E2η2

ℓEr

[∥∥∥∇f(w(r)
g )
∥∥∥2]) (69)

Plugging the bound of T3 in T1,

T1 ≤ −
ηℓE

2

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ
+

ηℓL
2E

2τ

(
5Eη2

ℓ

(
σ2
ℓ + 6Eσ2

g

)
+ 30E2η2

ℓEr

[∥∥∥∇f(w(r)
g )
∥∥∥2]) (70)

= −ηℓE

2

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ
+

5η3
ℓL

2E2

2τ

(
σ2
ℓ + 6Eσ2

g

)
+

15η3
ℓL

2E3

τ
Er

∥∥∥∇f(w(r)
g )
∥∥∥2 (71)

Bounding T2

T2 =

〈
∇f(w(r)

g ),Er

[
∆(r)

√
v(r) − d(r) + τ

− ∆(r)√
β2v(r−1) − β3d(r−1) + τ

]〉
(72)

= Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

√
β2v

(r−1)
j − β3jd

(r−1)
j −

√
v
(r)
j + d

(r)
j

(
√

v
(r)
j − d

(r)
j + τ)(

√
β2v

(r−1)
j − β3jd

(r−1)
j + τ)

(73)

= Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

(√
β2v

(r−1)
j −

√
v
(r)
j

)
+
(
d
(r)
j − β3jd

(r−1)
j

)
(
√

v
(r)
j − d

(r)
j + τ)(

√
β2v

(r−1)
j − β3jd

(r−1)
j + τ)

(74)

= Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

β2v
(r−1)
j −v

(r)
j√

β2v
(r−1)
j +

√
v
(r)
j

+ (1− β3j)((∆
(r)
j )2 − v

(r)
j )

(
√

v
(r)
j − d

(r)
j + τ)(

√
β2v

(r−1)
j − β3jd

(r−1)
j + τ)

(75)

≤ Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

β2v
(r−1)
j − v

(r)
j + (1− β3j)((∆

(r)
j )2 − v

(r)
j )

(
√

v
(r)
j − d

(r)
j + τ)(

√
β2v

(r−1)
j − β3jd

(r−1)
j + τ)

(76)
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Now we rearrange the nominator to convert it into terms with only ∆(r) and v(r).

= Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

β2(∆
(r)
j )2 − v

(r)
j + β3j(v

(r)
j − (∆

(r)
j )2)

(
√

v
(r)
j − d

(r)
j + τ)(

√
β2v

(r−1)
j − β3jd

(r−1)
j + τ)

(77)

= β2Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

(∆
(r)
j )2

(
√

v
(r)
j − d

(r)
j + τ)(

√
β2v

(r−1)
j − β3jd

(r−1)
j + τ)

+ Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

−v(r)j

(
√

v
(r)
j − d

(r)
j + τ)(

√
β2v

(r−1)
j − β3jd

(r−1)
j + τ)

+ Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

β3j(v
(r)
j − (∆

(r)
j )2)

(
√

v
(r)
j − d

(r)
j + τ)(

√
β2v

(r−1)
j − β3jd

(r−1)
j + τ)

(78)

≤ β2

τ
Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

(∆
(r)
j )2

(
√

v
(r)
j − d

(r)
j + τ)

− 1

τ
Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

β2v
(r−1)
j

(
√

β2v
(r−1)
j − β3jd

(r−1)
j + τ)

+
1

τ
Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

β3j(1− β2)
∑r−1

i=0 βr−i
2 (∆

(i)
j )2

(
√

v
(r)
j − d

(r)
j + τ)

(79)

Here, the first term inequality follows from the fact that
√

β2v
(r−1)
j ≥ β3d

(r−1)
j , since

√
β2v

(r−1)
j − β3d

(r−1)
j ≤

ηℓEG
(√

β2(1− βr
2) + β3(1− βr

3)
)

. Similarly for the second term, we can remove
√

v
(r)
j − d

(r)
j from the denominator to

get an upper bound since the term is positive (
√

v
(r)
j − d

(r)
j ≤ ηℓEG

(√
(1− βr

2) + (1− βr
3)
)

). And −v(r)j ≤ −β2v
(r−1)
j , since v(r)j

is always positive. For the third term, v(r)j − (∆
(r)
j )2 = (1− β2)

∑r
i=0 β

r−i
2 (∆

(i)
j )2 − (∆

(r)
j )2 = (1− β2)

∑r−1
i=0 βr−i

2 (∆
(i)
j )2. For

the same of simplicity, we have assumed β3 ∈ [0, 1] to be a constant, but a similar anaysis can be derived for a dynamic β3 as well.

Bounding the above term further,

T2 ≤
β2

τ2
Er

d∑
j=1

[∇f(w(r)
g )]j × (∆

(r)
j )2 +

√
β2

τ2
Er

d∑
j=1

[∇f(w(r)
g )]j ×∆

(r)
j ×

√
v
(r−1)
j

+
1

τ2
Er

d∑
j=1

[∇f(w(r)
g )]j × β3j(1− β2)

r−1∑
i=0

βr−i
2 (∆

(i)
j )2 (80)

The first term inequality follows from
√

v
(r)
j − d

(r)
j ≥ ∆

(r)
j . Second term inequality follows from −

√
β2v

(r−1)
j − β3jd

(r−1)
j ≥

−
√

β2v
(r−1)
j .

T2 ≤
β2

τ2
Er

d∑
j=1

[∇f(w(r)
g )]j × (∆

(r)
j )2 +

√
β2

τ2
Er

d∑
j=1

[∇f(w(r)
g )]j × (∆

(r)
j )2

+
1− β2

τ2
Er

d∑
j=1

[∇f(w(r)
g )]j × β3j

r−1∑
i=0

βr−i
2 (∆

(i)
j )2 (81)
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∴ T2 ≤
(β2 +

√
β2)G

τ2
Er

d∑
j=1

(∆
(r)
j )2 +

(1− β2)G

τ2
Er

r−1∑
i=0

βr−i
2 (∆

(i)
j )2 (82)

≤ (β2 +
√
β2)G

τ2
Er

d∑
j=1

(∆
(r)
j )2 +

(1− βr−1
2 )G3|C|2E2

τ2
(83)

≤ (β2 +
√
β2)G

τ2
Er

d∑
j=1

(∆
(r)
j )2 +

(1− βr−1
2 )G3|C|2E2

τ2
(84)

Plugging in the bounds of T1 and T2 in Equation 61,

Er[f(w
(r+1)
g )] = f(w(r)

g ) + ηg

〈
∇f(w(r)

g ),Er

[
∆(r)√

β2v(r−1) − β3d(r−1) + τ

]〉
︸ ︷︷ ︸

T1

+ ηg

〈
∇f(w(r)

g ),Er

[
∆(r)

√
v(r) − d(r) + τ

− ∆(r)√
β2v(r−1) − β3d(r−1) + τ

]〉
︸ ︷︷ ︸

T2

+
Lη2

g

2
Er

 (∆(r))2(√
v(r) − d(r) + τ

)2


(85)

≤ f(w(r)
g ) + ηg

(
−ηℓE

2

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ
+

5η3
ℓL

2E2

2τ

(
σ2
ℓ + 6Eσ2

g

)
+

15η3
ℓL

2E3

τ
Er

∥∥∥∇f(w(r)
g )
∥∥∥2)

+ ηg

(
G(β2 +

√
β2)

τ2
Er

d∑
j=1

(∆
(r)
j )2 +

G3|C|2E2(1− βr−1
2 )

τ2

)
+

Lη2
g

2τ2
Er(∆

(r))2 (86)

Using the bounds derived on Er(∆
(r))2 from Lemma C.9,

∴ Er[f(w
(r+1)
g )] ≤ f(w(r)

g )− ηgηℓE

2τ

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ
+

5ηgη
3
ℓL

2E2

2τ
(σ2

ℓ + 6Eσ2
g)

+
15ηgη

3
ℓL

2E3

τ
Er

∥∥∥∇f(w(r)
g )
∥∥∥2 + (Lη2

g

2τ2
+

ηgG(β2 +
√
β2)

τ2

)
Er(∆

(r))2 +
G3|C|2E2(1− βr−1

2 )

τ2
(87)

≤ f(w(r)
g )− ηgηℓE

2τ

[∇f(w(r)
g )]2√

β2v(r−1) − β3d(r−1) + τ
+

5ηgη
3
ℓL

2E2

2|C|τ (σ2
ℓ + 6Eσ2

g) +
15ηgη

3
ℓL

2E3

|C|τ Er

∥∥∥∇f(w(r)
g )
∥∥∥2

+

(
Lη2

g

2τ2
+

ηgG(β2 +
√
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)(
6η2

ℓEσ2
ℓ
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ℓL

2E3
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σ2
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g
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(
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g

2τ2
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√
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G3|C|2E2(1− βr−1

2 )
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(88)

≤ f(w(r)
g )− ηgηℓE

2τ

[∇f(w(r)
g )]2√
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+

(
5ηgη

3
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2E2
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4
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(
15ηgη

3
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)
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∥∥∥∇f(w(r)
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2 )
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(89)

where q1 =
Lη2

g

2τ2 +
ηgG(β2+

√
β2)

τ2 , q2 =
180η4

ℓL
2E4

|C| + 2E2η2
ℓ + 6η2

ℓE(B2 − 1), q3 =
6η2

ℓEσ2
ℓ

|C| + 6η2
ℓEG2.
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Summing over r = 1 to R gives us,

Er[f(w
(R)
g )] ≤ f(w(0)

g )−
R∑

r=1

ηgηℓE

2τ

[∇f(w(r)
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≤ f(w(0)
g )−
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ηgηℓE
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[∇f(w(r)
g )]2√
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ℓL

2E3
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+
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(
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3
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|C|τ + q1q2

)
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∥∥∥∇f(w(r)
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2
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Using the fact 15ηgη
3
ℓL

2E3

|C|τ + q1q2 ≤ ηgηℓE

2τ
derived from the bounds on the local learning rate ηℓ ≤

min

[(
|C|

30L2E

) 1
2
,

(
τ

6(B2−1)[G(β2+
√
β2)+Lηg]

)]
, we get
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(R)
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g )− ηgηℓE
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d∑
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Using the following lower bound,

R∑
r=1

d∑
j=1

[∇f(w(r)
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≥ R

ηℓEG(
√

β2(1− βr
2) + β3(1− βr

3)) + τ
min

1≤r≤R

∥∥∥∇f(w(r)
g )
∥∥∥2 (94)

we derive the convergence bound as follows,

min
0≤r≤R

E
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√
β2(1− βr

2) + β3(1− βr
3)) + τ)

ηℓηgER

[
f(w(0)

g )− Er[f(w
(R)
g )]

]
+

2(ηℓEG(
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∴ min
0≤r≤R

E
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Assuming ηℓ = Θ(1/L
√
E), ηg = Θ(1/

√
R), and τ = G/L, we get the following asymptotic bound for the convergence of FLASH,
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