Structured Pruning for
Multi-Task Deep Neural Networks

Siddhant Garg
Adobe Inc.
Email: siddhantg@adobe.com

Lijun Zhang

Abstract—Although multi-task deep neural network (DNN)
models have computation and storage benefits over individual
single-task DNN models, they can be further optimized via
model compression. Numerous structured pruning methods have
already been developed that can readily achieve speedups in
single-task models, but the pruning of multi-task networks has
not yet been extensively studied. In this work, we investigate the
effectiveness of structured pruning on multi-task models. We use
an existing single-task filter pruning criterion and also introduce
an MTL-based filter pruning criterion for estimating the filter
importance scores. We prune the model using an iterative pruning
strategy with both pruning methods. We show that, with careful
hyper-parameter tuning, architectures obtained from different
pruning methods do not have significant differences in their
performances across tasks when the number of parameters is
similar. We also show that iterative structure pruning may not
be the best way to achieve a well-performing pruned model
because, at extreme pruning levels, there is a high drop in
performance across all tasks. But when the same models are
randomly initialized and re-trained, they show better results.

Index Terms—Multi-Task Learning, Structural Pruning

I. INTRODUCTION

Multi-task learning (MTL) addresses multiple machine
learning tasks simultaneously by creating a single multi-task
deep neural network (DNN) [1]. Due to parameter sharing,
a multi-task DNN model is more computation and memory
efficient compared to multiple single-task models. The MTL
framework is extremely useful for resource-constrained de-
vices like smartphones, wearables, and self-driving cars that
host Al-powered applications but have low memory resources
and strict latency requirements. For example, in self-driving
cars, the model needs to recognize traffic lights, objects,
and lanes based on the input vision signal [2]. Multi-task
models are also frequently used in other vision and content
understanding tasks such as segmentation and object detection.

On the other hand, network pruning [3]-[5] is a long-
standing and effective method to compress DNNs. It aims to
detect the importance of model parameters and remove the
ones that tend to have the least significance on the perfor-
mance. Approaches for network pruning can be classified as
unstructured pruning methods [3], [4] that mask individual
weights in the network, and structured pruning methods [5],
[6] that remove complete filters and directly lead to efficient
deep neural models without requiring specialized hardware for

Hui Guan

College of Information & Computer Sciences College of Information & Computer Sciences
University of Massachusetts Amherst
Ambherst, Massachusetts, 01003
Email: lijunzhang @cs.umass.edu

University of Massachusetts Amherst
Ambherst, Massachusetts, 01003
Email: huiguan@cs.umass.edu

sparse structures. Network pruning is studied rigorously in
literature for single-task models and there exist many prun-
ing criteria based on weight magnitude [4], [5], connection
sensitivity [7], [8], and even learning-based pruning methods
(9], [10].

However, the study on the effectiveness of structured prun-
ing methods on multi-task models is sparse. A few works
like [1 1], [12] propose weight sharing and merging strategies
for constructing a multi-task model from multiple single-task
models such that there is a minimum conflict between tasks.
Then the constructed multi-task model could be effectively
pruned with single-task pruning methods. But these works
show very similar results when comparing their proposed
pipeline with the baseline single-task pruning methods. An-
other work [13], proposed a method to directly prune MTL
networks but while pruning those models with single-task
pruning baselines, they did not try different hyperparameter
settings to retrain/fine-tune the pruned models. It could be
possible that different hyperparameter settings would work
better because different pruning methods lead to different
architectures.

In this work, we investigate the effectiveness of structured
pruning on multi-task DNNs. We apply two structured pruning
methods to prune multi-task models and show that regardless
of the method used, we can obtain similar results from
the pruned models with the same number of parameters.
Specifically, we use an existing single-task pruning method as
well as introduce another MTL-based pruning criterion. The
proposed criterion is called CosPrune and it identifies and
prunes the convolutional filters that have conflicts between
tasks. It uses pairwise cosine similarity between the task-
specific gradients that flow through the filter during back-
propagation. We accumulate this similarity score for some
training iterations for every filter in the multi-task model.
The filters with the least accumulated scores are pruned away.
In contrast, the single-task pruning method is called Taylor
Pruning [6] which is a popular gradient-based pruning method.
It determines the importance of the filter by looking at the
increase in the loss function if that filter is removed. The
Taylor pruning importance score is also accumulated over
some training iterations before pruning.

We start our analyses by using the iterative pruning and

fine-tuning strategy which repeatedly prunes a small propor-
tion of filters and fine-tunes the multi-task model to gain
back the lost performance [4], [14]. Using this strategy we
get consistently better results with CosPrune against Taylor
pruning across all the tasks. The multi-task model achieved
higher GFLOPs/parameter reduction with CosPrune without
performance loss across all the tasks. This shows that the
proposed CosPrune criterion coupled with iterative pruning
is a reasonable method for pruning multi-task models.

However, when we re-train the pruned models indepen-
dently with random initialization, we observe that they can
give relatively better results on all the tasks when com-
pared to the corresponding fine-tuning stage of iterative
pruning. The key is to determine good learning rates for each
of the pruned models. Using the same learning rates is not the
best strategy to compare different pruned architectures. This
is because every model has different layer-wise configurations
and so, an optimal hyper-parameter setting for one model may
not be best for the other models with different architectural
designs. This type of analysis is generally not done in the
existing literature — the same training settings are used for the
dense model as well as the pruned models. A study on single-
task structured pruning [14] also shows that re-training the
pruned models from random initialization can lead to better
results than fine-tuning the pruned architectures in the iterative
pruning setting.

Furthermore, the pruned architectures from different prun-
ing methods give similar results to each other at the same
parameter level after re-training. There are no consistent
winners with respect to different pruning criteria, which
is contrary to what we observe in the case of iterative
pruning. There are also some recent works [15], [16] in the
context of single-task neural networks where random channel
pruning is able to match the results of the dense model
under appropriate settings. Similarly, another work [14] used
different pruning methods on various architectures to show
that randomly re-initializing the pruned models can match the
performance of the respective unpruned models but they did
not compare those different pruning strategies on the same
model.

We go beyond existing works and apply different structured
pruning methods to the same multi-task model. We emphasize
that the pruned MTL model obtained from any reasonable
pruning method can perform well if it is trained from
random initialization with its optimal learning rate. And
we would like researchers to pay attention to the re-training
comparisons with sufficient hyper-parameter tuning when they
try to propose a new pruning method.

II. RELATED WORKS

Multi-Task Learning: Deep MTL networks afford numer-
ous benefits in terms of computation (storage and latency)
[17], knowledge sharing between tasks [18] and improving
generalization in the learned representations [19] due to which
they have applications across many domains like Computer
Vision [20]-[23], Robotics [24], [25], and Reinforcement

Learning [26]-[29]. The most common MTL framework is
hard parameter sharing [1], [30] where a backbone network is
shared among all tasks and with individual task-specific heads.
Soft parameter sharing, on the other hand, has different sets of
parameters for individual tasks [19], [31] and various methods
are used to effectively combine information from them [32]-
[34] to make predictions.

Deep Neural Network Pruning: It has long been es-
tablished that the deep neural networks are highly over-
parameterized [3], [5], [35]-[37], and more than 90% of the
connections can be pruned away without losing accuracy.
Unstructured pruning methods for single-task models [4],
[38] can achieve high sparsity with latency improvements
with accelerated hardware for sparse neural networks [39].
On the other hand, structured pruning can directly lead to
computational benefits by removing whole filters in the case of
convolutional layers [5]. Gradient-based metrics for estimating
the importance scores of the filters have recently become
popular over magnitude-based criteria [5]. For example, Taylor
Pruning [6] uses the dot product between the filter weights
with its gradient to approximate the change in loss function
that could occur if that filter is masked. Another example is
SNIP [7], which determines the connection sensitivity using
a similar importance metric as Taylor Pruning but it is done
only once at initialization to apply single-shot pruning. Fur-
thermore, random channel pruning methods [15], [16] are also
shown to perform well under appropriate training conditions.

Pruning Multi-task Neural Networks: There is very lim-
ited study on pruning MTL neural networks but nonetheless it
is an important problem because of its tremendous potential in
deriving efficient deep learning models. At the same time, it is
also a difficult problem because of the coexistence of complex
task relationships in the shared parameter space and redun-
dancy in the neural network. A recent work on MTL pruning
is DiSparse [13] which aims to disentangle task relationships
to find the unanimously least important filters across all the
tasks and prune them. Another work called PAM [12] propose
a method to merge single-task models into an MTL network
such that the resulting MTL network can be safely pruned
while considering the tasks’ relatedness. Similarly, other works
like [40], [41] propose different merging strategies for the con-
struction of computationally efficient MTL networks. All of
these existing works do baseline comparisons by using single-
task pruning methods to prune their MTL networks. However,
they use only the hyperparameters that are specified in the
original study on single-task pruning methods irrespective of
the different model architectures and sparsity ratios. But in our
work, we do extensive analyses and hyperparameter tuning
for both the pruning methods involved to show their true
effectiveness in pruning deep MTL networks.

III. PRUNING METHODS

In this section, we will define our Multi-Task Learning
model and the proposed CosPrune importance score estimation
method as well as review the Taylor Pruning importance score.

Multi-task framework: Given a set of T tasks 7 =
{71,...,7r}, an MTL dataset with inputs, X, and the cor-
responding labels Y = {Y1,...,Yr} where Y; is set of labels
for task 7 € 7, we want to learn the mapping fo : X —),
where © = 0,U{0,}]_,. Here 0 is the set of model parameters
that are shared by all the tasks and 6, is the set of parameters
only for task 7:. From now, we will denote {6} as the set
of all the task-specific parameters for all the tasks collectively
and omit values of ¢ for abbreviation. The parameters © are
trained by minimizing the multi-task loss function given by

T
LX,Y,0)=> £ (X,,0,0,) (1)
t=1
where ¢; (X,), 05, 6;) is the loss function for the task 7.
CosPrune Importance Score Estimation: Let WF*Fx¢ ¢
© be a convolutional filter with kernel size k, and ¢ channels,
then the weights of this filter will be optimized using the
gradient descent given by equation 2,

W W - nVwL(X,V,0) 2)

where 7 is the learning rate and Vw/L(X,),0) is the
gradient of the total loss function with respect to W. Let
g7V—V =VwL(X,),0), then

g =) & 3)

where gV = Vw/l (X,Y,0,,60;). g and gV can be
denoted as the total gradient and task-7; gradient respectively
with respect to the parameter W. Note that the total gradient
is the vector sum of all the individual task gradients. These
individual gradients can have high differences in magnitudes
as well as they can point to different directions with negative
cosine similarity between them. This can lead to conflicts
between different tasks and that could be detrimental to the
optimization process [42]. There have been several works like
PCGrad [42], MGDA [43], CAGrad [44] that apply various
methods to remove the conflicts in the optimization process.
In our work, we prune the filters that have the highest degree
of accumulated conflicts but optimize our MTL model with
the total gradient. This helps us to achieve the highest degree
of optimization in terms of computation and performance.
To calculate the degree of conflict, we define the CosPrune
Importance score, as the sum of pairwise cosine similarity

W
between all the tasks for the parameter W. Let gV = H:’—’w”
t

be the normalized task gradient, and {g}V} be the set of all
the task gradients with respect to W, then C (W, {gV) can
be calculated using:

cW.{g")= > &'&g" “

(73,75)ETXT

We only prune the shared parameters, W € 6, therefore
gV # 0 for all t = 1,...,T. The value of C(.,.) will
be higher when the pairwise gradients are in agreement and
it will lower if tasks are in conflict. For calculating the

Algorithm 1 MTLCosPrune

Input: Dataset: X,) with T tasks; Model Parameters:
W € O; Fine-tune Iterations — I; #Filters to prune at each
pruning step — P,
Initialize ©,
while #Unpruned Filters > threshold do

Set AC(W) < 0 YW € © (accumulated scores)

fori=1,2,...,1 do

x; <Batch Inputs

yi <Batch Labels

gyv = Vwi; xi,yiﬁg, 9%) Vt, VW € 9;

Get C(W, {gV}) using Eq. 4 Vt, YW € 6!

Update AC(W) < AC(W)+C(W,{gV}) Vt, VW €

Compute g¥W = Zle gV
Update W < W — ng7v—v, Vt, VW € 92
end for
Prune P filters W with lowest AC(W) scores
end while

final importance score of a filter, we keep on adding the
CosPrune scores for all the filters for a fixed number of
training iterations. After that, we rank the filters according
to their accumulated importance scores and prune the lowest-
scoring filters. After pruning, we reset the accumulated scores
to zero and fine tune the model again along with collecting
the CosPrune scores of the remaining unpruned filters. The
details are provided in Algorithm 1.

Taylor Pruning [6]: It is a structured pruning method for
single-task convolution neural networks which serves as a
popular baseline for modern gradient-based pruning methods.
In this method, the importance score of a filter is defined by the
squared change in the loss function induced by removing the
filter. To make the computation efficient, the squared change
is approximated by the first-order Taylor expansion which
simplifies to a dot product between the filter weights and its
gradient. Let the importance score for the filter W be I, then
it is given by

1=WgY 5)

where g7V—V is the total gradient passing through filter W during
backpropagation as define in equation 3.

We experiment with both CosPrune and Taylor pruning
methods and compare their performance in effectively pruning
the MTL models.

IV. EXPERIMENTS AND RESULTS
In this section, we provide the details of all the experiments
and provide quantitative evidence of our claims.
A. Setup

Model Architecture: For our multi-task model, we use a
hard parameter-sharing paradigm where the backbone parame-
ters are shared across all the tasks and individual classification
heads are used for each task. MTL backbone comprises of

VGG-16 [45] model without the last fully-connected layers
and MTL classification heads use Artrous Spatial Pyramid
Pooling (ASPP) heads [46] for each task. The backbone con-
tains approximately 710 parameters and each ASPP head has
approximately 13.4M parameters. In all of our experiments,
we only prune the backbone but all the results are reported
with the total model parameters (backbone + all task heads)
which are approximately 84.12M parameters.

Multi-Task Learning (MTL) Dataset: In this work,
NYUv2 [47] dataset is used for all of the experiments. It
is a popular Multi-Task Learning MTL dataset with densely
labeled images recorded from RGB and Depth cameras of
Microsoft Kinect. It contains three tasks — Semantic Segmenta-
tion, Depth Estimation, and Surface Normal Prediction whose
ground truth labels are defined in [20].

Evaluation Metrics: Semantic segmentation is evaluated
using mean Intersection over Union (mloU) and the Pixel
accuracy (both the higher the better). Depth Estimation is
evaluated using absolute and relative errors calculated using
the L1 loss between the ground truth and predictions (both
the lower the better). For this task, we also report the rela-
tive difference between the prediction and ground truth via

the percentage of § = max , -2t) within threshold
Ygt Ypred

1.25,1.252, and 1.253 [48] (the higher the better). Surface
Normal Prediction is evaluated using the Mean and Median
Angle errors calculated by cosine similarity loss (the lower
the better). We also report the percentage of pixels whose
predictions are within 11.25°, 22.5°, and 30° to the ground
truth (higher the better) [20]. Due to space constraints and a
high number of pruned model configurations, we report Pixel
Accuracy for Semantic Segmentation, relative error for Depth
Estimation, and Angle Mean for Surface Normal Prediction as
the main evaluation metrics, for both pruning methods.

Ypred

Loss Functions and Model Training: For training on the
NYUv2 dataset, the model minimizes the sum of losses from
the individual tasks with equal weightage. Semantic segmen-
tation uses cross-entropy loss, Surface Normal Prediction uses
cosine similarity loss and Depth Estimation uses L1 loss as
its training signals. We start with a randomly initialized MTL
model with VGG-16 backbone and ASPP heads and train the
model for 500 epochs. We use a batch size of 16, and 0.0001
learning rate with cosine scheduling [49]. We use AdamW
[50] optimizer for the iterative pruning experiments.

Model Pruning: After the model is trained on the NYUv2
dataset, we apply iterative pruning with different filter pruning
criteria (CosPrune and Taylor pruning) to get pruned MTL
models. We initialize the model with the NYUv2 trained
weights and set the initial learning rate as 10~° with cosine
scheduling for 500 epochs and start the pruning process. For
every iteration (batch of inputs to the model), we get the
individual task gradients by applying backward propagation on
task losses. Then we calculate the importance score for every
filter in the model. The importance scores are accumulated
for 10 epochs after which 100 filters that have the lowest
accumulated scores, are pruned. This completes a single

pruning iteration and after it, the accumulated filter importance
scores are reset to 0. The learning rate and scheduler are
also rewinded to the initial settings and the pruning process
continues. Note that the parameters of the model keep on
updating using the total loss function after every iteration
which marks the fine-tuning phase of the model.

B. Results: Multi-Task Structure Pruning

Iterative Pruning Results: We applied the iterative prun-
ing strategy with both the Taylor Pruning criterion and the
CosPrune importance criterion separately on the model ini-
tialized with the trained NYUv2 weights and ran 6 sets
of experiments to accommodate for the variance in each
method. We present a subset of evaluation metrics in Figure
1, where we show the best values for different task metrics
(y-axis) against the number of parameters (z-axis) for both
methods. We have shown plots for Pixel Accuracy (Semantic
Segmentation), relative error (Depth Estimation), and Angle
Mean (Normal prediction).

From the plots in Figure 1, we can see that the CosPrune
method is consistently better than the Taylor pruning method
across all the tasks, i.e., it has a relatively lower Pixel Accuracy
drop in the case of Semantic Segmentation, and lower error
increment in case of Depth Estimation and Normal prediction
tasks. We also report numerical values in Table I where we
compare both the methods for the pruned models with a similar
number of parameters. We can see that there is the highest
performance gap at 14.3M model parameters which is 83%
parameter reduction, and Pixel Accuracy is 16.39% better,
Depth Estimation is 15.93% better and Normal prediction
is 3.45% better than the Taylor pruning method. However,
when with extreme pruning at 13.40/ parameters, the gap
is significantly lesser but nonetheless still better. For 59.9M
parameters, the Pixel Accuracy slightly drops for CosPrune
but all the metrics are very close as can also be seen from the
plots in Figure 1.

Re-training the Pruned models: So far we have observed
that the CosPrune can efficiently prune the MTL model
to achieve high parameter reduction within a few iterations
while maintaining its performance over the baseline method.
Both pruning criteria lead to pruned models with different
architectural designs in terms of the number of filters in
each layer of the backbone. Since there is a difference in
the performance, we want to figure out the role of these
different layer configurations in the model’s performance for
all the tasks. To do this, we take the pruned models at various
iterations, randomly initialize the weights and train them to
converge on the NYUv2 dataset. Initially, we were using the
same hyperparameters for training all the models but saw that
some models were severely affected. For example, a model
with 15M parameters, obtained from CosPrune could achieve
only 25.5% Pixel Accuracy even after training for 500 epochs.
But when the learning rate of 0.0001 was used it reached
over 42%, and the performance of the other two tasks was
also improved. In another case, a model obtained from Taylor
Pruning with 14 M parameters resulted in 38% Pixel Accuracy

##Params Semantic Segmentation Depth Estimation Surface Normal

Pixel Accuracy (%) 1 Relative Error | Angle Mean |
#(M) %pg | Taylor CosPrune %A 1 | Taylor CosPrune RA | | Taylor CosPrune %A(l)
59.9 28.7 45.96 45.91 — 0.11 0.2616 0.2614 — 0.08 18.54 18.37 —0.92
42.7 49.2 45.66 45.70 + 0.09 0.2666 0.2670 + 0.17 18.35 18.22 —0.73
21.2 74.8 43.02 44.86 + 4.27 0.2862 0.2777 — 2.98 18.19 17.19 —1.53
17.6 79.1 41.56 42.98 + 3.41 0.3384 0.2829 —16.42 18.16 18.03 —-0.71
14.3 83.0 35.83 41.70 +16.39 0.3896 0.3276 —15.93 18.65 18.00 —3.45
13.4 84.0 34.88 36.08 + 3.43 0.3928 0.3747 — 4.59 18.82 18.39 —2.26

TABLE I: Iterative pruning results at selected iterations. # (M

):

Number of model parameters in millions. %r: % parameter

reduction with respect to full model. %A 1 (1): % increase (decrease) with respect to Taylor pruning. 1: Higher the better |:

Lower the better.

Semantic Segmentation

Depth Estimation

Surface Normal Prediction

47.5
Taylor 0.40 Taylor 18.8 Taylor

45.0 —— CosPrune —— CosPrune) —— CosPrune
S 42.5
:U: E 0.35
< _I
i~ 40.0]
& 0.30
%375 :

35.0

0.25
TSI LSS FSSSTHITFST S5
FTRTQT SN e N R S R
#Params (M) #Params (M)

(a) Pixel Accuracy

(b) Relative Error

(c) Angle Mean

Fig. 1: Iterative pruning performance trends for different tasks for the Taylor and CosPrune methods.

Semantic Segmentation

Depth Estimation Surface Normal

#Param Ir setting Pixel Accuracy (%) T Relative Error | Angle Mean |
#(M) %r | Taylor CosPrune | Taylor CosPrune | Taylor CosPrune | Taylor CosPrune
60.3 28.3 0.0005 0.0001 47.82 46.52 0.2688 0.2525 17.97 18.20
37.1 55.8 0.001 0.0001 46.51 46.18 0.2761 0.2614 17.91 18.21
29.7 64.6 0.001 0.0001 46.44 45.34 0.2835 0.2761 17.85 18.09
25.9 69.2 0.001 0.0005 46.86 47.84 0.2853 0.2604 17.78 17.97
19.1 77.3 0.001 0.0001 45.54 43.42 0.2874 0.2570 17.86 17.92
15.3 81.8 0.001 0.0001 42.86 44.67 0.3362 0.2957 18.08 17.99
14.4 82.9 0.001 0.001 41.82 44.40 0.3381 0.3109 18.10 18.06

TABLE II: Results of the pruned models trained from scratch

across different tasks. #(M): Number of model parameters in

millions. %gr: % parameter reduction with respect to full model. lr setting: Optimal learning rate for the respective model. 1:

Higher the better; |: Lower the better.

with 0.0001 learning rate, whereas the same model reached
over 44% with 0.001 learning rate. Moreover, some pruned
models gave their best results for 0.0005 learning rate.

Therefore, to get the best possible performance from every
pruned model, we trained them on 3 sets of learning rates
which are 0.001, 0.0005, and 0.0001. We ran all the experi-
ments for 500 epochs with cosine scheduling and used Adam
[51] optimizer for training. We summarize results for a subset
of models in Table II. Each row shows the performance com-
parison between pruned models obtained from Taylor pruning
and CosPrune which have the same number of parameters.
We have also given the desired learning rate for each model.
It seems that Taylor pruned models favor 0.001 learning rate
with a few favoring 0.0001, and 0.0005. On the other hand,
CosPruned models favor smaller learning rates of 0.0001, and

0.0005. The corresponding plots for the 3 tasks are shown in
Figure 2.

From the results in Table II, we can see that the models
obtained from different pruning methods lead to very sim-
ilar performance across all the tasks when the number of
parameters is roughly equal. Figure 2, also shows this similar
trend where the winning method keeps on fluctuating with
changing model parameters. In some cases, Taylor pruned
models perform better than CosPruned models and in other
cases, it is vice-versa but the results are still very close for both
methods across all tasks. We have also compared the results
of the individually pruned models with the results from the
corresponding iterative pruning iterations in Figure 2. It can be
seen that at very low parameters, the iterative pruning results
become worse than the results of the models that were trained

Semantic Segmentation

Depth Estimation

Surface Normal Prediction

0.400
47.5 Taylor 18.6 Taylor
0.375 Taylor iter. pruning Taylor iter. pruning
_45.0 — 1841 D =
< 0.350 CosPrune _ < 5 CosPrune
S 4 = ---- CosPrune iter. pruning)
g425 9,0.325 / >
=] Q@
2400 Taylor = 0.300 2
[Taylor iter. pruning <
37.51 —— CosPrune 0.275
---- CosPrune iter. pruning .
350 0.250
PP P LTRSS
R H RN RO ICSCIICIOR S
#Params (M)

(a) Pixel Accuracy

(b) Relative Error

(c) Angle Mean

Fig. 2: Results of the pruned models, trained individually from scratch, across all the tasks for various model parameters. Solid
plot lines correspond to primary results. Dashed plots correspond to the iterative pruning trends from Figure 1.

solely from scratch except in the case of normal estimation
where the Angle Mean is slightly better in the case of the
iterative CosPrune method.

C. Results Discussion

We observed that if we consider the pruned models obtained
from two different pruning methods, randomly initializing and
re-training with their corresponding optimal learning rate give
similar results for the same number of parameters. At some
parameter levels, the pruned model obtained from Taylor prun-
ing performed better but at some other parameter levels, the
pruned model obtained from CosPrune gave better results. But
there is only a slight difference in the results which could be
induced by the randomness of the training process. By looking
at these results, we can conclude that different architecture
configurations with a similar number of parameters do not
play a major role in the final performance across tasks as long
as the models are trained with their optimal training settings.

Furthermore, we saw that the structured iterative pruning
was biased towards one pruning criterion over the other
as Figure | shows that the CosPrune models outperformed
Taylor pruned models at the same parameter level. But when
the pruned models were re-trained from scratch, their final
performances became similar and even closer to the unpruned
model as seen in Figure 2. But for both methods, there was a
steep drop in the performance at extreme pruning ratios, which
was again mitigated by random initialization and re-training
that led to better performance even at those extreme pruning
ratios. This might be happening because, in the case of iterative
structured pruning, the inherited trained weights from previous
pruning iterations may act as bad initialization for the pruned
models at successive iterations [14]. Even if those weights
were optimal for the earlier unpruned model versions, they
might not be good for the current version because of changes
in the architecture after pruning and it can be difficult for the
optimizer to find another good local minimum.

V. CONCLUSIONS

In this work, we used two different structured pruning
methods to compress deep multi-task neural networks. We

are first to comprehensively analyze their effectiveness in
pruning such networks. Specifically, we showed that different
architectural configurations of the pruned models can give
similar results regardless of the pruning method used if the
number of parameters is the same. We also showed that
iterative structured pruning may not be the best strategy
to compress deep multi-task models. They might favor one
pruning strategy over another. But regardless of the pruning
strategy used, the performance of the pruned models can take
a steep drop after certain iterations. However, we also showed
that after random initialization and re-training those models
with their respective optimal learning rates, they can give much
higher performance across all the tasks.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-2312396, CNS-
2338512, CNS-2224054, and DMS-2220211. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] O. Sener and V. Koltun, “Multi-task learning as multi-objective opti-
mization,” Advances in neural information processing systems, vol. 31,
2018. 1, 2

[2] J. Phillips, J. Martinez, I. A. Barsan, S. Casas, A. Sadat, and R. Ur-
tasun, “Deep multi-task learning for joint localization, perception, and
prediction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 4679-4689. 1

[3] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Advances
in neural information processing systems, vol. 2, 1989. 1, 2

[4] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018. 1,
2

[5] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.
1,2

[6] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp.
11264-11272. 1, 2,3

[7]1 N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network pruning
based on connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.
1,2

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging the
lottery: Making all tickets winners,” in International Conference on
Machine Learning. PMLR, 2020, pp. 2943-2952. 1

X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding, “Resrep:
Lossless cnn pruning via decoupling remembering and forgetting,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 4510-4520. 1

Z. Hou, M. Qin, F. Sun, X. Ma, K. Yuan, Y. Xu, Y.-K. Chen, R. Jin,
Y. Xie, and S.-Y. Kung, “Chex: channel exploration for cnn model
compression,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 12287-12298. 1

H. Cheng, Z. Wang, L. Ma, X. Liu, and Z. Wei, “Multi-task pruning via
filter index sharing: A many-objective optimization approach,” Cognitive
Computation, vol. 13, pp. 1070-1084, 2021. 1

X. He, D. Gao, Z. Zhou, Y. Tong, and L. Thiele, “Pruning-aware
merging for efficient multitask inference,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 585-595. 1, 2

X. Sun, A. Hassani, Z. Wang, G. Huang, and H. Shi, “Disparse:
Disentangled sparsification for multitask model compression,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 12382-12392. 1, 2

Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv preprint arXiv:1810.05270, 2018. 2,
6

Y. Li, K. Adamczewski, W. Li, S. Gu, R. Timofte, and L. Van Gool,
“Revisiting random channel pruning for neural network compression,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 191-201. 2

S. Liu, T. Chen, X. Chen, L. Shen, D. C. Mocanu, Z. Wang, and
M. Pechenizkiy, “The unreasonable effectiveness of random pruning:
Return of the most naive baseline for sparse training,” arXiv preprint
arXiv:2202.02643, 2022. 2

D. Kim, T. Lan, C. Zou, N. Xu, B. A. Plummer, S. Sclaroff, J. Eledath,
and G. Medioni, “Mila: Multi-task learning from videos via efficient
inter-frame attention,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 2219-2229. 2

M. Abdollahzadeh, T. Malekzadeh, and N.-M. M. Cheung, “Revisit mul-
timodal meta-learning through the lens of multi-task learning,” Advances
in Neural Information Processing Systems, vol. 34, pp. 1463214 644,
2021. 2

I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch net-
works for multi-task learning,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 3994-4003. 2
D. Eigen and R. Fergus, “Predicting depth, surface normals and se-
mantic labels with a common multi-scale convolutional architecture,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 2650-2658. 2, 4

R. Hu and A. Singh, “Unit: Multimodal multitask learning with a unified
transformer,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 1439-1449. 2

M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, “Dynamic
task prioritization for multitask learning,” in Proceedings of the Euro-
pean conference on computer vision (ECCV), 2018, pp. 270-287. 2
G. Ghiasi, B. Zoph, E. D. Cubuk, Q. V. Le, and T.-Y. Lin, “Multi-
task self-training for learning general representations,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 8856-8865. 2

C. Williams, S. Klanke, S. Vijayakumar, and K. Chai, “Multi-task
gaussian process learning of robot inverse dynamics,” Advances in
neural information processing systems, vol. 21, 2008. 2

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning,” in Conference on robot learning. PMLR, 2020,
pp. 1094-1100. 2

Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell,
N. Heess, and R. Pascanu, “Distral: Robust multitask reinforcement
learning,” Advances in neural information processing systems, vol. 30,
2017. 2

S. Sodhani, A. Zhang, and J. Pineau, “Multi-task reinforcement learning
with context-based representations,” in International Conference on
Machine Learning. PMLR, 2021, pp. 9767-9779. 2

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

(51]

A. Wilson, A. Fern, S. Ray, and P. Tadepalli, “Multi-task reinforcement
learning: a hierarchical bayesian approach,” in Proceedings of the 24th
international conference on Machine learning, 2007, pp. 1015-1022. 2
R. Yang, H. Xu, Y. Wu, and X. Wang, “Multi-task reinforcement learning
with soft modularization,” Advances in Neural Information Processing
Systems, vol. 33, pp. 47674777, 2020. 2

R. Caruana, “Multitask learning: A knowledge-based source of inductive
biasl,” in Proceedings of the Tenth International Conference on Machine
Learning. Citeseer, 1993, pp. 41-48. 2

X. Sun, R. Panda, R. Feris, and K. Saenko, “Adashare: Learning what
to share for efficient deep multi-task learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 8728-8740, 2020. 2

Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. Feris, “Fully-
adaptive feature sharing in multi-task networks with applications in
person attribute classification,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 5334-5343. 2
A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7482-7491. 2

S. Ruder12, J. Bingel, 1. Augenstein, and A. Sggaard, “Learning what to
share between loosely related tasks,” arXiv preprint arXiv:1705.08142,
2017. 2

B. Hassibi and D. Stork, “Second order derivatives for network pruning:
Optimal brain surgeon,” Advances in neural information processing
systems, vol. 5, 1992. 2

C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for deep
learning,” Advances in neural information processing systems, vol. 30,
2017. 2

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, 2015. 2

J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “The lottery
ticket hypothesis at scale,” arXiv preprint arXiv:1903.01611, 2020. 2
M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern
gpus,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 359-371. 2

H. Cheng, Z. Wang, L. Ma, X. Liu, and Z. Wei, “Multi-task pruning via
filter index sharing: A many-objective optimization approach,” Cognitive
Computation, vol. 13, pp. 1070-1084, 2021. 2

X. He, Z. Zhou, and L. Thiele, “Multi-task zipping via layer-wise neuron
sharing,” Advances in Neural Information Processing Systems, vol. 31,
2018. 2

T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gra-
dient surgery for multi-task learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 5824-5836, 2020. 3

J.-A. Désidéri, “Multiple-gradient descent algorithm (mgda) for multi-
objective optimization,” Comptes Rendus Mathematique, vol. 350, no.
5-6, pp. 313-318, 2012. 3

B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, “Conflict-averse gradi-
ent descent for multi-task learning,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 878-18 890, 2021. 3

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
4

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” arXiv preprint arXiv:1412.7062, 2014. 4

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images.”” ECCV (5), vol. 7576, pp.
746-760, 2012. 4

D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” Advances in neural
information processing systems, vol. 27, 2014, 4

I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016. 4

——, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017. 4

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. 5

	Introduction
	Related Works
	Pruning Methods
	Experiments and Results
	Setup
	Results: Multi-Task Structure Pruning
	Results Discussion

	Conclusions
	References

